
Nov. 25 2023 @ PAAP2023

Global Store Statement Aggregation
Tomohiro Sano and Yasunobu Sumikawa

Takushoku University, Japan



Background 

C program Cache memory Main  memory

main(){
  a[i]=x;
  b[i]=y;
  a[i+1]=z;
}



Background 

C program Cache memory Main  memory

main(){
  a[i]=x;
  b[i]=y;
  a[i+1]=z;
}



Background 

C program Cache memory Main  memory

main(){
  a[i]=x;
  b[i]=y;
  a[i+1]=z;
}

Write miss



Background 

C program Cache memory Main  memory

main(){
  a[i]=x;
  b[i]=y;
  a[i+1]=z;
}

Write miss



Objective

We propose a novel code motion algorithm named Global Store statement Aggregation (GSA)

main(){
  a[i]=x;
  b[i]=y;
  a[i+1]=z;
}

main(){
  b[i]=y;
  a[i]=x;
  a[i+1]=z;
}



Related Works
Aggregating load statements has been proposed 

Y. Sumikawa and M. Takimoto, “Global load instruction aggregation based on code motion,” in 5th PAAP, 2012, pp. 149–156.

main(){
  x=a[i];
  y=b[i];
  z=a[i+1];
}

main(){
  x=a[i];
  z=a[i+1];
  y=b[i];
}
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2. Sinking each store statement extended by PDE
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CFG creation

C program
CFG (control flow graph)

main(){
  a[i]=x;
  b[i]=y;
  a[i+1]=z;
}

a[i+1]=z

b[i]=z

a[i]=x
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PDE

PDE eliminates partially dead variables

print(x)

x=1+2

x=1
This variable is not used if the control 
flow executes the read path. 
This variable is called partially dead.

1

2 3

4

Killing the first 
definition

J. Knoop, O. Ruthing, and B. Steffen, “Partial dead code elimination,” ¨ SIGPLAN Not., vol. 29, no. 6, pp. 147–158, jun 1994.



Sinking of PDE

1

x=1
x=1+2

2 x=13

print(x)4

Fully dead



Elimination 

1

x=1+22 x=13

print(x)4



PDE extension

GSA performs PDE sinking only for store statements

print(x)

x=1+2

a[i]=1 Target of GSA1

2 3

4

Not target 
of GSA
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Array reference analysis

1. Forwarding analysis
2. Backwarding analysis



Array reference analysis

a[i+1]=z

b[i]=z

a[i]=x
1. Forwarding analysis
2. Backwarding analysis

Analyzing

Find a same array after diff. array

1

2

3



Array reference analysis

a[i+1]=z

b[i]=z

a[i]=x
1. Forwarding analysis
2. Backwarding analysis

Analyzing

1. Find a different array

Inconsistent
region
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Sinking using the array reference analysis

a[i+1]=z

b[i]=z

a[i]=x

Sink

1

2

3

2’



Evaluation

Compiler: COINS

Baseline: PDE

Benchmark program: distcountsort (Count), radixsort (Radix), and arrays(Array)

CPU: Intel Corei7-11700 2.50GHz 

OS: Ubuntu 64bit

L1d and Li1 cache memories: 384 KiB, 256 KiB

L2 cache memory: 4 MiB

L3 cache memory: 16 MiB



Results | Total number of cache misses

A. PDE B. GSA (A-B) / A

Count 25,480 25,266 0.84%

Radix 6,662 6,575 1.31%

Array 18,362 17,343 5.55%



Results | Number of last level cache store misses

A. PDE B. GSA (A-B) / A

Count 17,918 17,889 0.16%

Radix 1,200 1,171 2.42%

Array 11,661 11,450 1.81%



Results | Execution time

A. PDE B. GSA (A-B) / A

Count 1,564.8 1,342 14.24%

Radix 566.6 562.5 0.72%

Array 551.5 531.5 3.63%



Conclusion

● We proposed a novel code motion based cache optimization algorithm, named global store statement 
aggregation (GSA).

● GSA aims at reducing write misses by making store statements accessing the same array continuously.

Future Work

● we will examine moving all store and load statements at the same time to enhance GSA.

Thank you for your attention!


