
Nov. 25 2023 @ PAAP2023

Global Store Statement Aggregation
Tomohiro Sano and Yasunobu Sumikawa

Takushoku University, Japan



Background 

C program Cache memory Main  memory

main(){
  a[i]=x;
  b[i]=y;
  a[i+1]=z;
}



Background 

C program Cache memory Main  memory

main(){
  a[i]=x;
  b[i]=y;
  a[i+1]=z;
}



Background 

C program Cache memory Main  memory

main(){
  a[i]=x;
  b[i]=y;
  a[i+1]=z;
}

Write miss



Background 

C program Cache memory Main  memory

main(){
  a[i]=x;
  b[i]=y;
  a[i+1]=z;
}

Write miss



Objective

We propose a novel code motion algorithm named Global Store statement Aggregation (GSA)

main(){
  a[i]=x;
  b[i]=y;
  a[i+1]=z;
}

main(){
  b[i]=y;
  a[i]=x;
  a[i+1]=z;
}



Related Works
Aggregating load statements has been proposed 

Y. Sumikawa and M. Takimoto, “Global load instruction aggregation based on code motion,” in 5th PAAP, 2012, pp. 149–156.

main(){
  x=a[i];
  y=b[i];
  z=a[i+1];
}

main(){
  x=a[i];
  z=a[i+1];
  y=b[i];
}



Algorithm overview

1. Traversing the control flow graph (CFG) with reverse topological sort order
2. Sinking each store statement extended by PDE
3. Array reference analysis during the sinking



Algorithm overview

1. Traversing the control flow graph (CFG) with reverse topological sort order
2. Sinking each store statement extended by PDE
3. Array reference analysis during the sinking



CFG creation

C program
CFG (control flow graph)

main(){
  a[i]=x;
  b[i]=y;
  a[i+1]=z;
}

a[i+1]=z

b[i]=z

a[i]=x



CFG traversing

a[i+1]=z

b[i]=z

a[i]=x



CFG traversing

a[i+1]=z

b[i]=z

a[i]=x



CFG traversing

a[i+1]=z

b[i]=z

a[i]=x



Algorithm overview

1. Traversing the control flow graph (CFG) with reverse topological sort order
2. Sinking each store statement extended by PDE
3. Array reference analysis during the sinking



PDE

PDE eliminates partially dead variables

print(x)

x=1+2

x=1
This variable is not used if the control 
flow executes the read path. 
This variable is called partially dead.

1

2 3

4

Killing the first 
definition

J. Knoop, O. Ruthing, and B. Steffen, “Partial dead code elimination,” ¨ SIGPLAN Not., vol. 29, no. 6, pp. 147–158, jun 1994.



Sinking of PDE

1

x=1
x=1+2

2 x=13

print(x)4

Fully dead



Elimination 

1

x=1+22 x=13

print(x)4



PDE extension

GSA performs PDE sinking only for store statements

print(x)

x=1+2

a[i]=1 Target of GSA1

2 3

4

Not target 
of GSA



Algorithm overview

1. Traversing the control flow graph (CFG) with reverse topological sort order
2. Sinking each store statement extended by PDE
3. Array reference analysis during the sinking



Array reference analysis

1. Forwarding analysis
2. Backwarding analysis



Array reference analysis

a[i+1]=z

b[i]=z

a[i]=x
1. Forwarding analysis
2. Backwarding analysis

Analyzing

Find a same array after diff. array

1

2

3



Array reference analysis

a[i+1]=z

b[i]=z

a[i]=x
1. Forwarding analysis
2. Backwarding analysis

Analyzing

1. Find a different array

Inconsistent
region

1

2

3



Sinking using the array reference analysis

a[i+1]=z

b[i]=z

a[i]=x

Sink

1

2

3

2’



Evaluation

Compiler: COINS

Baseline: PDE

Benchmark program: distcountsort (Count), radixsort (Radix), and arrays(Array)

CPU: Intel Corei7-11700 2.50GHz 

OS: Ubuntu 64bit

L1d and Li1 cache memories: 384 KiB, 256 KiB

L2 cache memory: 4 MiB

L3 cache memory: 16 MiB



Results | Total number of cache misses

A. PDE B. GSA (A-B) / A

Count 25,480 25,266 0.84%

Radix 6,662 6,575 1.31%

Array 18,362 17,343 5.55%



Results | Number of last level cache store misses

A. PDE B. GSA (A-B) / A

Count 17,918 17,889 0.16%

Radix 1,200 1,171 2.42%

Array 11,661 11,450 1.81%



Results | Execution time

A. PDE B. GSA (A-B) / A

Count 1,564.8 1,342 14.24%

Radix 566.6 562.5 0.72%

Array 551.5 531.5 3.63%



Conclusion

● We proposed a novel code motion based cache optimization algorithm, named global store statement 
aggregation (GSA).

● GSA aims at reducing write misses by making store statements accessing the same array continuously.

Future Work

● we will examine moving all store and load statements at the same time to enhance GSA.

Thank you for your attention!


