
Journal of Information Processing Vol.33 1–12 (Mar. 2025)

[DOI: 10.2197/ipsjjip.33.1]

Regular Paper

Demand-driven PRE using Profile Information

Takuna Uemura1 Yasunobu Sumikawa1,a)

Received: March 7, 2024, Accepted: December 10, 2024

Abstract: Partial redundancy elimination (PRE) eliminates redundant expressions that repeatedly compute the same
values. Following redundancy elimination, the application of copy propagation reveals additional redundancy, known
as second-order effects. Eliminating this type of redundancy requires the iterative application of PRE and copy propa-
gation. To eliminate many second-order effects within a short analysis time, demand-driven PRE (DDPRE) has been
proposed. However, existing DDPREs assume that all expressions are executed an equal number of times, poten-
tially resulting in spending analysis time on expressions with limited impact even after redundancy elimination and
generating spills in register allocation that reduce the effects of redundancy elimination. This study proposes a novel
type of DDPRE called profile-guided DDPRE (PDPRE) that utilizes runtime information to selectively apply DDPRE
to areas where redundancy elimination is effective. Additionally, to eliminate second-order effects without execut-
ing a combination of redundancy elimination and copy propagation, PDPRE initially applies global value numbering.
Subsequently, it visits expressions in the order of high execution counts, and then analyzes the redundancy of each
expression. To evaluate the effectiveness of PDPRE, we applied PDPRE and existing DDPREs to the programs of
the SPEC CPU2000 benchmark. We found that PDPRE both achieves shorter analysis times compared to the existing
DDPREs and yields better execution times in many programs compared to existing DDPREs.

Keywords: Compiler, code optimization, partial redundancy elimination, demand-driven analysis, profile information

1. Introduction
Partial redundancy elimination (PRE) [7], [10] is a code op-

timization algorithm employed by compilers to eliminate redun-
dant expressions along specific execution paths. The traditional
PREs analyze the entire program using a data-flow analysis to
identify redundancies. Subsequently, redundancy is eliminated
by transforming the expressions to reference the results of pre-
vious executions. The application of copy propagation leads to
subsequent modifications in the appearance of subsequent expres-
sions, revealing newly analyzable redundancies. Such redundan-
cies are known as second-order effects.

Demand-driven PRE (DDPRE) [15] has been proposed to ef-
ficiently eliminate numerous second-order effects within a short
analysis time. Existing DDPREs traverse the control flow graph
(CFG) in topological order. During traversal, DDPRE generates
queries each time an expression appears in a visited node, and
then propagates them toward the start node of the CFG for ana-
lyzing redundancy. When the same expression is found as that
for the query, the query returns true, whereas if it is difficult to
identify whether the analyzing expression is redundant, it returns
false. In cases where both true and false are returned in a node, it
is concluded that the expression generating the query is partially
redundant at that node. To eliminate the redundancy, expressions
are inserted into the predecessors that returned false, rendering it
fully redundant. It then replaces the expression that generated the
query with the result of inserted expression. As query propaga-
tion analyzes a portion of the program, it is known that the anal-

1 Takushoku University, Tokyo, 193–0985, Japan
a) ysumikaw@cs.takushoku-u.ac.jp

ysis time is shorter than that of traditional PRE, which analyzes
the entire program. However, existing DDPREs assume that all
expressions are executed the same number of times. This premise
not only leads to the unnecessary analysis of expressions that do
not significantly contribute to reducing the execution time of the
objective code, but also introduces the issue of increased spills,
which are known to reduce the effectiveness of PRE [7]. The re-
dundancy elimination performed by PRE tends to extend the life-
time of variables because it transforms expressions to reference
previously computed results. As a result, the usage period of reg-
isters occupied by variables is prolonged. The more redundancy
is eliminated, the greater the number of variables that remain live
simultaneously, which tends to generate spills that transfer data
from registers to memory due to insufficient register space. When
spills occur, the values of variables that should be recorded in
registers are instead stored in the main memory. That is, store
instructions for storing the values to the main memory and load
instructions for using the variables are inserted. This not only
increases the number of executed instructions but also deterio-
rates execution time because memory references take longer than
register references. Thus, to maintain the benefits of reduced ex-
ecution time gained through redundancy elimination while mini-
mizing the occurrence of spills, it is crucial to prioritize the elim-
ination of redundancies in frequently executed expressions.

In this study, we propose a novel DDPRE algorithm, named
profile-guided DDPRE (PDPRE), that acknowledges the fact that
the number of executions per expression varies in practice. To
prioritize the elimination of redundancies in frequently executed
expressions, PDPRE visits only the top-ranking CFG nodes based
on execution count, generating queries to analyze redundancies

© 2025 Information Processing Society of Japan 1

Journal of Information Processing Vol.33 1–12 (Mar. 2025)

1
a

1
=1

b
1
=1

4

a
3
=Φ(a

1
, a

2
)

y
1
=a

3
+1

w
1
=a

3
+1

2 x
1
=a

1
+1 3 a

2
=1

5
s

1
=y

1
+1

v
1
=w

1
+1

(a) Original CFG

1

a
1
=1

b
1
=1

t
2
=1+1

4

a
3
=Φ(a

1
, a

2
)

y
1
=t

2

w
1
=y

1

t
1
=y

1
+1

2 x
1
=t

2 3 a
2
=1

5
s

1
=t

1

v
1
=s

1

(b) Result

Fig. 1 Example of PDPRE

1

2

3

4

5

50

20

1,500

50

1,000

(a)

1 {1}

{1}

{2}

{2}

{1}

{1}

{2}

{2}

{1}

{3}

{3}

{3}

a
1

b
1

x
1

a
2

a
3

y
1

w
1

s
1

v
1

{1}+{1}

{2}+{1}

(b)

Fig. 2 Tables of Fig. 1

each time an expression appears. However, visiting the CFG in
this order may fail to eliminate second-order effects if the query
analyzes redundancy by lexical matching. To enable redundancy
analysis without relying on lexical consistency, PDPRE prepro-
cesses a program by transforming it into the static single assign-
ment (SSA) form and applies global value numbering (GVN)
[12]. GVN assigns the same value number to expressions that
compute the same value, thereby eliminating all fully redun-
dant expressions among expressions with different lexical rep-
resentations. PDPRE eliminates partial redundancy by analyz-
ing whether an expression generates the same value number as a
query. During the process of expression insertions, PDPRE en-
deavors to minimize the number of execution for the expressions
to be inserted.

Figure 1 illustrates how PDPRE eliminates redundancies using
runtime information. Before applying the query propagation of
PDPRE, we assume that the tables (a) and (b) shown in Fig. 2 are
available. These tables list the execution counts of all nodes and
the value numbers for all expressions, respectively. Notably, in
this paper, we use {} to represent value number. In this example,

attention is focused on Nodes 2, 4, and 5 of Fig. 1 (a), which
contain expressions involving arithmetic operations. Comparing
the number of times those nodes are executed, PDPRE first vis-
its Node 5. It then analyzes redundancy of the expression y1+1.
Referring to the table (b) presented in Fig. 2, the value number
for y1+1 is {3}. This is because the value of s1 is defined by the
result of the calculation of that equation. In other words, they
have the same value; therefore, the value number of expression
matches the one of s1. PDPRE generates two queries to analyze
the redundancy of the expression with value number {3} and prop-
agates them to the predecessor Nodes 4 and 5. We first look at the
query propagation for the Node 4. As Node 4 does not contain an
expression with the same value number, the query further visits
predecessor Nodes 2 and 3. These queries finally visit Node 1;
however, no expression with the same value number appears in
the visited nodes. Consequently, all queries from Nodes 1 to 4
return false. We next look at the other query propagation from
Node 5 to itself. This query returns true because the query finds
the original expression. These two queries indicate that the ex-
pression y1+1 is partially redundant at Node 5. To eliminate this
redundancy, the path reaching Node 4, where the query returns
false, is selected for the insertion of y1+1. Among the nodes
where the query returns false, Node 2 has the minimum execu-
tion count. However, the defined variable at Node 2 is not usable
at Node 4 because the variable is not defined if the control flow
reaches Node 4 through Nodes 1 and 3; in other words, Node 2
does not dominate Node 4. Thus, Node 2 is deemed inappropriate
as a node to perform the insertion. We simply call the node where
we perform the expression insertion insertion node. PDPRE se-
lects Node 4 as the insertion node because the execution count
is the minimum among the suitable insertion nodes. PDPRE in-
serts t1=y1+1 to Node 4. It then replaces the right-hand side
of s1=y1+1 with t1. Next, we analyze the redundancy of w1+1.
Its lexical representation is different from y1+1; however, GVN
identifies this redundancy by assigning the same value to the two
variables y1 and w1 because the two variables are defined by the
same expressions, meaning that these expressions compute the
same value. Thus, we replace w1+1 with s1.

After eliminating the redundancy, PDPRE proceeds to visit
Node 4 where this is the node with the second highest execution
count among the focusing three Nodes 2, 4, and 5. For the right-
hand side of y1=a3+1 in Node 4, PDPRE propagates queries to
predecessor Nodes 2 and 3. Node 2 contains an expression with
the same value number, whereas Nodes 3 and 1 do not. Con-
sequently, a3+1 is identified as partially redundant at Node 4.
A new expression is inserted into the path that reaches Node 3,
where the query returns false. In this case, Node 1 is a suitable
insertion node because it has a lower execution count than Node
3 and dominates Node 3. However, because the definition of a3
does not reach Node 3, PDPRE uses other variables or values that
share the same value number. In this example, the inserted state-
ment involves t2=1+1. After inserting this statement, the right-
hand side of y1=a3+1 is replaced by t2. As the right-hand side of
w1=a3+1 computes the same value as the left-hand side of y1=t2,
it is further simplified to w1=y1. Figure 1(b) shows the results of
applying PDPRE to all expressions.

© 2025 Information Processing Society of Japan 2

Journal of Information Processing Vol.33 1–12 (Mar. 2025)

As shown in the example above, PDPRE reduces the number
of visiting nodes and of eliminating expressions, thereby short-
ening the analysis time for DDPRE and improving the execution
time of the objective code by minimizing the occurrence of spills.
To assess the effectiveness of the proposed algorithm, we imple-
mented PDPRE in the COINS compiler. We performed compara-
tive evaluations using programs from the SPEC CPU2000 bench-
mark and existing DDPREs. First, by decreasing the number of
nodes that are analyzed, we verified that the actual analysis time
would become shorter. Next, in order to determine the optimal
percentage of nodes with high execution frequency for which re-
dundancy elimination should be applied, we examined the num-
ber of programs that showed improved execution time. The anal-
ysis revealed that targeting the top 10% was most effective. Based
on this result, we compared all existing DDPRE algorithms with
PDPRE. We evaluated how much analysis time was reduced by
limiting the scope to the top 10%. The results confirmed that
PDPRE significantly reduced the analysis time for all programs.
While we also observed a reduction in the number of redundant
expressions eliminated due to the narrowed scope, PDPRE had
the highest number of programs with the shortest execution time.
To investigate the reason for this, we counted the number of spills
generated by applying each DDPRE and found that, for many
programs, PDPRE resulted in the fewest spills. The conclusion
drawn from the experiments is that PDPRE performs faster analy-
sis than the existing DDPREs, without compromising the quality
of the objective code.

2. Preliminaries
2.1 Program Representation

When applying PDPRE, it is assumed that each expression has
at most one operator known as the three-address code. For exam-
ple, if an expression is of the form z = a + b + c, which contains
two operators, it is split into separate statements to ensure that
each right-hand side has only one operator. In this case, the trans-
formation results in statements such as t = a + b; z = t + c.

When applying PDPRE, the target program is assumed to be
represented by a CFG consisting of a set of basic blocks N, a set
of edges E, a start node start, and an end node end. Note that
both start and end are empty statements. We represent the sets
of predecessors and successors of node n as pred(n) and succ(n),
respectively.

When node m exists in all the execution paths leading from
start to node n, it is said that m dominates n [1]. In this paper,
the predicate dom(m, n) denotes that m dominates n. If there ex-
ists a path from m to end through n such that n is the first node
not dominated by m, n is in the dominance frontier of m. We
represent the dominance frontier as the predicate dfront(m, n).

PDPRE is assumed to take a program that has been transformed
into the SSA form as input. This implies that the program is in
a form in which each variable has only one definition. In SSA
form, when multiple definitions reach a single usage point, a new
variable is introduced at the point of confluence using a ϕ func-
tion. This definition allows the program to handle cases in which
multiple definitions converge without compromising the seman-
tics. The node where the ϕ function is inserted is the dominance

true false

Τ

⊥

⊤ ⊓ true = true

⊤ ⊓ false = false

true ⊓ false = ⊥
⊥ ⊓ true = ⊥
⊥ ⊓ false = ⊥
⊤ ⊓ ⊥ = ⊥

Fig. 3 Semi-lattice of answer space

frontier of the node that defines the argument variables.

2.2 Availability and Anticipability
We define four terms: available, up-safe, anticipable, and

down-safe. These definitions are generally based on an analy-
sis of the lexical consistency of the expressions being analyzed
[2]. However, we extend them to be based on value numbers
as our analyses use value number consistency rather than lexical
consistency.

A value number v of expression e is available at n iff v is com-
puted on any path p from start to n. We use comp(ve, n) to denote
the expression e whose value number v is computed at n. When
v is available at n, n is up-safe with respect to v. v is partially
available at n iff there is at least one path from start to n where
v is computed. When v is available at n, it is fully redundant.
When v is partially available at n, it is partially redundant. If v
is partially redundant, it is made fully redundant by inserting ex-
pressions whose value numbers are v.

A value number v of e is anticipable at node n iff e is com-
puted along any path r from n to end. When v is anticipable at n,
n is down-safe with respect to v. PRE inserts expressions at the
down-safe nodes without extending the lengths of any path.

2.3 Answer Space
Our query propagation determines answers defined on semi-

lattice (A, ⊓, ⊤, ⊥) that is shown in Fig. 3, where A is a set of
answers, ⊓ : A × A → A is a meet operator on A, ⊤ ∈ A is a
top element, and ⊥ ∈ A is a bottom element. For all a ∈ A, the
top and bottom elements are defined as ⊤⊓ a = a and ⊥⊓ a = ⊥,
respectively.

3. Related Work
PRE analyzes both directions from each expression to start

and to end, to detect partially redundant expressions. Early PRE
simultaneously performs these analyses using bidirectional data-
flow equations [10]. However, this approach has limitations as it
cannot detect certain redundancies and sometimes leads to unnec-
essary code motion. Lazy code motion (LCM) addresses these
issues by combining unidirectional data-flow equations to per-
form analyses in both directions [7], [8]. However, LCM does not
eliminate all redundancies. The redundancies that LCM does not
eliminate fall into two categories: those that cannot be eliminated
without inserting expressions into nodes that are not down-safe,
and those that differ in their lexical form.

Several algorithms have been proposed to eliminate the two
types of redundancies mentioned above. To eliminate the first
type of redundancies, an algorithm has been proposed that either
duplicates the program to preserve down-safety while eliminat-

© 2025 Information Processing Society of Japan 3

Journal of Information Processing Vol.33 1–12 (Mar. 2025)

ing all redundancies [2], or algorithms perform speculative in-
sertions that ignore down-safety. To eliminate the second type
of redundancies, there are algorithms that combine PRE with
GVN [11], [16]. These algorithms utilize value numbers obtained
through GVN rather than lexical matching in the data-flow equa-
tions used for redundancy analysis. Additionally, several DDPRE
algorithms have been proposed to combine redundancy analysis
by query propagation and copy propagation or GVN. The algo-
rithms particularly related to PDPRE are those involving spec-
ulative code motion, the combination of PRE and GVN, and
DDPRE. Thus, in Section 3.1, we review speculative code mo-
tion algorithms, and in Section 3.2, we explore the combination
of GVN and PRE. We then focus on broad studies of DDPRE in
Section 3.3.

3.1 Speculative Code Motion
PRE typically prohibits modification of program semantic be-

fore and after applying code optimizations using down-safety.
However, for programs in which exception handling is unnec-
essary or instructions without exceptions occur, moving instruc-
tions to non-down-safe execution paths may merely increase the
execution time of the program without introducing exceptions.
In such cases, if eliminating redundancies leads to a reduction
in the number of executed expressions, thereby outweighing the
drawbacks of inserting expressions, such elimination may be ben-
eficial. Following this principle, min-cut PRE (MC-PRE) was
proposed [3], [17]. MC-PRE considers insertion points as points
dividing the original program into two and determines the point
with the minimum cost using the minimum-cut. While there is a
possibility that the inserted expressions will be newly computed
along some execution paths, the overall program benefits from a
reduction in the number of executed expressions.

Although MC-PRE has the potential to improve program ex-
ecution time, it involves additional computations of minimum
cuts after analyzing the availability and anticipability like LCM;
therefore, it tends to have longer analysis times than the non-
speculative PREs discussed earlier. An algorithm has been pro-
posed to achieve speculative code motion while minimizing anal-
ysis costs [6]. In this algorithm, there is a trade-off between re-
ducing analysis costs and limiting the elimination of redundan-
cies. However, the state-of-the-art speculative PRE utilizes the
bounded tree-width of the CFG, providing faster analysis with
the same execution time as MC-PRE [9].

An algorithm of profile-based PRE targeting SSA form is pro-
posed as MC-SSAPRE [19]. MC-SSAPRE is an extension of
SSAPRE [4], which aims to improve analysis efficiency by ana-
lyzing partial redundancy on SSA graphs. This extension seeks
to enhance the SSAPRE by determining insertion points for ex-
pressions through a minimum-cut approach.

These algorithms are effective in eliminating many redundan-
cies that are lexically equal. However, reflecting second-order
effects requires multiple applications, often in conjunction with
copy propagation. Thus, the analysis time for these algorithms
tends to be higher than that for non-speculative algorithms.

3.2 Combining GVN and PRE
To eliminate the second-order effects of PRE without apply-

ing copy propagation, GVN-PRE [16] and PVNRE [11] are pro-
posed. GVN-PRE targets SSA form and assigns the same value
number to expressions with identical values, even if their lexial
forms differ. This algorithm eliminates many redundancies by
utilizing data-flow analysis designed to leverage these value num-
bers. However, the data-flow equations proposed in GVN-PRE
are designed outside the traditional PRE framework. To achieve
results comparable to other PRE algorithms, such as LCM, it is
necessary to either extend GVN-PRE or apply the algorithm iter-
atively. PVNRE also uses value numbering to eliminate partially
redundant expressions. In PVNRE, value numbers are assigned to
ϕ functions and their arguments to accommodate syntactic trans-
formations at ϕ functions. Additionally, to prevent the movement
of expressions dependent on induction variables within loops out-
side the loop, PVNRE ensures the transparency of the back edge.
This implies that PVNRE operates under the assumption that the
loop structure is reducible.

PDPRE does not have the limitations present in GVN-PRE or
PVNRE, allowing it to effectively eliminate redundancies with a
single application for any given program.

3.3 DDPRE
DDPRE propagates queries to examine the availability for re-

dundancy elimination. Existing DDPREs visit the CFG in a topo-
logical order and propagate queries toward start whenever an ex-
pression appears. For example, PREQP [15] returns true if the
query finds expressions with the same lexical representation. If
the query encounters instructions that modify the values of the
query’s expression or visits start, it returns false. Another algo-
rithm, EDDPRE [14], extends this query propagation by analyz-
ing the occurrences of expressions with the same value number
rather than lexical equality. EDDPRE first applies GVN. Then,
the query returns true if it finds the same value number and false
if it propagated to start. These DDPREs perform optimistic an-
swer determination when encountering the same node within a
loop, anticipating that the expression will be computed redun-
dantly in the loop. While this optimistic algorithm facilitates the
movement of loop-invariant expressions to outside the loop, it
may lead to an inability to eliminate certain redundancies in pro-
grams with loops containing multiple exits.

To address the issues with PREQP and EDDPRE, LDPRE [18]
introduces a symbol ⊤, which denotes the undecidability of the
answer, to construct a lattice of answer space defined in Section
2.3. LDPRE proposes query propagation that uses the lattice. The
possible results returned by these queries include true, indicating
that the same expression has actually appeared; false, indicating
that there is no occurrence of the same expression along the prop-
agated path of the query; and ⊤, indicating that the query has vis-
ited the same node twice. To find the repeated visiting, LDPRE
uses ⊥ indicating that the query has already been visited.

All prior DDPREs assume that every expression within the pro-
gram is executed an equal number of times.

© 2025 Information Processing Society of Japan 4

Journal of Information Processing Vol.33 1–12 (Mar. 2025)

Algorithm 1 Algorithm overview
1: Function PDPRE(FrecInfo, k)
2: nodes← SortingNodesByFreq(FrecInfo)
3: worklist ← GetTopFreqNodes(nodes, k)
4: GVN()
5: while | worklist |> 0
6: n← worklist.pop() // Visiting a node
7: foreach e ∈ n
8: ve ← val(e)
9: ans← NAvail(e, ve, n) // Query propagation

10: if ans = true
11: Eliminate(e)

4. Algorithm
PDPRE assumes that the execution count information for all

nodes has been preacquired and is already available for reference
before analyzing redundancies.

Algorithm 1 outlines the key steps of PDPRE, CFG travers-
ing using execution count information, GVN application, and
subsequent query propagation for redundancy analysis. PDPRE
first sorts nodes based on their execution counts given as
the argument FrecInfo (line 2). PDPRE applies the function
SortingNodesByFreq to sort and stores the result in the list nodes.
It then defines the stack worklist as collecting only top k frequent
nodes by applying the function GetTopFreqNodes to the nodes.
Subsequently, the algorithm applies GVN to assign value num-
bers to all expressions in the program (line 4). The main loop,
spanning lines 5 to 11, iterates over the nodes extracted from the
worklist. Each expression within the visiting node is retrieved
individually (line 7). The algorithm then obtains the value num-
ber associated with the expression (line 8). To analyze the re-
dundancy of this value number, the algorithm invokes the NAvail
function for query propagation (line 9), as detailed in Section 4.3.
If the query propagation result is true, indicating the presence of
redundancy, the Eliminate function is executed to perform pro-
gram transformations, replacing the occurrences of the expres-
sion with the left-hand side of the prior statements sharing the
same value number (line 11).

Subsequently, we describe the processes of CFG traversal,
GVN algorithm employed in PDPRE, and redundancy analysis
through queries using value numbers.

4.1 CFG Traversing
PDPRE prioritizes the visits of nodes in order of high execu-

tion count to maximize the effectiveness of redundancy elimina-
tion. This is accomplished by initially recording the nodes in the
worklist, prioritizing nodes with higher execution counts. How-
ever, visiting nodes in this order may lead to a limitation, mean-
ing that simple lexical matching through queries is insufficient
for eliminating redundancy in expressions with different lexical
equality.

We discuss this issue using the example illustrated in Fig. 1(a).
In this program, the expressions y1+1 and w1+1 in Node 5 have
different lexical forms. However, looking at Node 4, the vari-
ables, y1 and w1, are defined by the same expression, indicat-

ing that both y1+1 and w1+1 compute the same value. If lexical
matching is used for redundancy analyzing, it is necessary to visit
Node 4 first to replace the right-hand side of the definition for w1
with y1. It then applies copy propagation to change w1+1 to y1+1;
this result reveals the redundancy of the expression. However,
because Node 5 has a higher execution count than Node 4, the
visiting order prioritizes the redundancy analysis in Node 5 over
Node 4. This leads to a situation in which the aforementioned
expression transformation cannot be achieved.

To address this issue, as mentioned in Section 1, PDPRE uses
the value numbers obtained through GVN for query analysis.
GVN assigns the same value number to w1+1 and y1+1, as shown
in table (b) of Fig. 2. Consequently, PDPRE eliminates this re-
dundancy.

4.2 GVN
GVN assigns the same value number to expressions that com-

pute the same value, regardless of their lexical equality. This fea-
ture enables the detection of redundancies without relying on the
lexical representation of expressions. While traditional GVN is
able to eliminate redundancies beyond nodes, we skip the pro-
cess. This distinction is made because PDPRE addresses inter-
node redundancies through query propagation, as explained in
Section 4.3.

When another expression with the same value number exists
earlier within the same node, GVN makes the later expression by
referring to the previous computation to eliminate redundancy. To
facilitate the elimination of such redundancies, GVN maintains
a local table that records the value numbers specifically within
each node. Additionally, GVN utilizes a global table denoted as
valTable, to manage the value numbers of all expressions glob-
ally. This allows for comprehensive and coordinated handling of
value numbers across the entire program.

We describe the procedure for assigning a value number to each
expression in detail. For an assignment statement, the first step is
to obtain the value numbers of the terms on the right-hand side.
To ease presentation, we represent the assignment statement as
t0 = t1 ⊕ t2. Initially, the value number for each term on the right-
hand side is retrieved from valTable. If t1 is not recorded in the
table, a new value number nv is generated, and an entry with t1
as the key and nv as the value is added to valTable. The same
procedure is performed to t2. Subsequently, it retrieves the value
number for the expression; likewise, the value number for t1 ⊕ t2
is acquired through valTable. As the left- and right-hand sides of
the assignment share the same value number, an entry with t0 as
the key and the value number of t1 ⊕ t2 is added to valTable. For
trivial assignments in the form of t0 = t1, the value number on the
right-hand side is just assigned to the left-hand side.

For ϕ function, if all arguments share the same value number,
the variable defined by the ϕ function is assigned the same value
number. Otherwise, each argument is converted into a value num-
ber using valTable, and then the value number for that combina-
tion is obtained using valTable. Finally, GVN adds an entry with
the variable defined by the ϕ function as the key and this value
number as the value to valTable.

© 2025 Information Processing Society of Japan 5

Journal of Information Processing Vol.33 1–12 (Mar. 2025)

2

3 x
1
=a

1
+b

1

Is v

available?

1
a

1
=def()

b
1
=def()

Fig. 4 Query propagation of PDPRE

2

1

3 x
1
=t
1

false

T

false

true

a
1
=def()

b
1
=def()

t
1
=a

1
+b

1

Fig. 5 Result of applying PDPRE for Fig. 4

4.3 Availability Analysis by Query Propagation
We here assume that ve is the value number of analyzing ex-

pression e. PDPRE propagates a query Is ve available? to each
predecessor for analyzing its redundancy. The result of this query,
similar to the LDPRE, forms an answer space over the lattice de-
fined in Section 2.3.

Figure 4 illustrates the process of analyzing the availability in
PDPRE. In this example, we focus on a1+b1 at Node 3. Let v be
the value number for this expression. Because there are two pre-
decessors (Nodes 2 and 3) in Node 3, two queries are generated
to analyze whether v exists in the destination nodes. The query
propagating to Node 2 continues further to predecessor Nodes 1
and 2 as Node 2 does not have any expression. Node 1 does not
have an expression assigned to v and has no predecessors, leading
to an inconclusive result, and the query returns false. Looking at
the other query propagated from Node 2 to itself, it encounters
a revisited node to analyze the same value number v. As further
analysis would only confirm the same result, this query returns
⊤ to indicate an undetermined result. Consequently, the answers
returned from the predecessors at Node 2 are false and ⊤. The
final answer at the entry point of Node 2 is determined as false
because PDPRE applies the meet operator ⊓ to ⊤ = {true, false}
and false. This result is also propagated from Node 2 to the entry
point of Node 3. The query propagated to Node 3 from the other
predecessor (Node 3) returns true because the destination Node
3 contains the expression associated with the query. Thus, the
answers returned from the predecessors at Node 3 are false and
true, indicating that the expression a1+b1 is partially redundant
at Node 3. To insert expression, PDPRE selects a node where
a query returned false. In this example, we have an assumption
that the execution count of Node 1 should be fewer than Node
2 because Node 2 is a node of a loop. Thus, PDPRE inserts the
statement t1=a1+b1 into Node 1, and then transforms the state-
ment in Node 3 to x1=t1. The result is shown in Fig. 5.

PDPRE assumes that each node is a basic block; thus, analyz-
ing whether ve is available at that node is corresponding to an exit
analysis. If the availability cannot be determined at the exit, an
analysis of the availability at the entry point of the node is con-
ducted by summarizing the results of propagating the query to
the predecessors. The availabilities at the exit and entry points of
a node are determined using the data-flow equations XAvail and
NAvail, respectively.

XAvail categorizes the answer determination rules into three
types: 1) If the value number ve occurs in node n, then avail-
ability is true. 2) If queries are propagated to predecessors, the
answer at the entry point is directly used as the answer at the exit
point. 3) If the query repeatedly visits the same node, the algo-
rithm uses a memorization mechanism to avoid infinite loops. To
determine the last type, PDPRE checks whether queries with the
same value number have already visited the same node by refer-
encing the memorization table visit. This corresponds to the sit-
uation in Fig. 4, where a query propagated from Node 2 to Node
2 returns ⊤ as the answer. This memorization table is used not
only to simply record ⊤, but also to record the answer when ei-
ther true or false is determined as the answer. For instance, in the
example in Fig. 1, the situation where the query repeatedly vis-
ited Node 1 corresponds to the use of this table. If previous query
propagation for the same value number determines any answer,
the current query returns the answer determined before. The se-
quence of application for these three types of rules is as follows:
If the current query involves visiting the node for the second time,
the query returns ⊤ or the answer determined during the previous
visit; otherwise, it proceeds with analysis using comp(ve, n). If
comp(ve, n) is false, the query is propagated to the predecessors.
The data-flow equations for determining these query answers can
be defined as follows:

XAvail(e, ve, n)
def
⇔

⊤ if visit[(ve, n)] = ⊥
true if visit[(ve, n)] = true
false if visit[(ve, n)] = false
true if comp(ve, n)
NAvail(ve, n) otherwise

(1)

The determination process for visit, which is not explicitly rep-
resented in the above equation, is described in the pseudo-code
in Algorithm 2. Lines 2 to 5 check whether a query analyz-
ing the same value number has already been visited. This cor-
responds to the first three conditions of Eq. 1. If the current visit
is the first visit for that value number, line 6 analyzes whether the
same value number appears in the current node using the predi-
cate comp(ve, n). If the answer for node n is still undetermined
after completing the analysis of the availability within the node,
line 9 records ⊥, indicating that n has been visited, in the table
visit[(ve, n)]. Subsequently, when propagating the query to the
predecessor with the function NAvail and obtaining its answer,
the value of the visit[(ve, n)] is updated (line 10).

Next, we present the data-flow equation for NAvail. This rep-
resents the answers to the queries returned by the predecessors.
To obtain the answers, the query first checks whether the visit-
ing node has predecessors. If the visited node is start, there are

© 2025 Information Processing Society of Japan 6

Journal of Information Processing Vol.33 1–12 (Mar. 2025)

Algorithm 2 Pseudo codes of XAvail
1: Function XAvail(e, ve, n)
2: if visit[(ve, n)] = ⊥
3: return ⊤
4: if visit[(ve, n)] = true | | visit[(ve, n)] = false
5: return visit[(ve, n)]
6: if comp(ve, n)
7: visit[(ve, n)]← true
8: return visit[(ve, n)]
9: visit[(ve, n)]← ⊥

10: visit[(ve, n)]← NAvail(e, ve, n)
11: return visit[(ve, n)]

4
a

3
=Φ(a

1
,a

2
)

x
2
=a

3
+1

1 a
1
= 1

2 x
1
= a

1
+1 3 a

2
= 10

Is v
2

available?Is v
1

available?

Fig. 6 Query propagation of PDPRE

4

t
2
=Φ(x

1
,t

1
)

a
3
=Φ(a

1
,a

2
)

x
2
=t

2

1 a
1
= 1

2 x
1
= a

1
+1 3

a
2
= 10

t
1
= a

2
+1

Fig. 7 Result of PDPRE application for Fig. 6

no further predecessors; thus, the answer is false. Otherwise, the
query is actually propagated to the predecessors. If at least one of
the predecessors returns true, indicating that it is fully or partially
redundant, then the answer at the entry point of the node is also
true. This is because PDPRE performs insertion to make partially
redundant fully redundant. Otherwise, PDPRE applies a meet op-
erator to the answers returned from predecessors and determines
it as the answer at the entry point.

Figure 6 illustrates a detailed example of query propagating to
predecessors. As PDPRE targets programs transformed into the
SSA form, where what was a single variable in normal form is
considered as multiple variables, ϕ functions are inserted at their
merge points. In this example, the variable a has definitions in
two places, Nodes 1 and 3, in the normal form program. Node 4
is a merge point where multiple definitions of a reach. If control
passes through Node 2, the use of a in Node 4 should use the
value defined in Node 1. If control passes through Node 3, the
use of a in Node 4 should use the value defined in Node 3. In
SSA form, a ϕ function is used to switch between these reaching
values. Therefore, when propagating queries to predecessors, it is
necessary to check whether the variable used in that expression is
defined by a ϕ function. When generating queries for the expres-
sion a3+1 in Node 4, the queries are propagated to predecessor
Nodes 2 and 3. Because a3 is defined by a ϕ function, it should
be replaced with a1 for propagating the query to Node 2. When

propagating the query to Node 3, it should be replaced by a2. As
variables change, their value numbers may also change; there-
fore, the value numbers analyzed by the query should be updated
accordingly. While performing this replacement, redundancy is
analyzed, and the result of the program transformation is shown
in Fig. 7. We represent these processes as the following data-flow.

ep
def
⇔ BUpdate(e, n, p)

vep

def
⇔ val(ep)

PAns
def
⇔

∏
p∈pred(n)

XAvail(ep, vep , p) (2)

NAvail(e, ve, n)
def
⇔

false if n = start
true if Insert(e, ve, n)
PAns otherwise

(3)

Note that the function BUpdate returns the result of replac-
ing variables defined by a ϕ function when propagating queries to
predecessors. The second condition in Eq. 3 represents a scenario
where queries return both true and false at a node, indicating that
PDPRE should execute the insertion of the expression.

We present the pseudo-code for Eq. 3 in Algorithm 3. Lines
2∼4 address cases in which the currently visited node is start.
The variable alist in line 5 records the answers returned from
the predecessors. The variable fplist on line 6 records the nodes
that are candidates of expression insertion. Lines 7∼10 perform
query propagation on their predecessors. The function BUpdate
on line 8 is used to modify the query’s expression when prop-
agating a query beyond ϕ functions. The results of this propa-
gation are recorded on line 11. If the answer is false or ⊤, the
predecessor is recorded in fplist as the insertion candidate node
for later use. Lines 14∼29 represent the processes that follow the
results of propagating queries to all predecessors. The function
isPRedundant(alist) checks whether the value number ve is par-
tially redundant by evaluating Eqs. 6 and 7 that are defined in
the next subsection. After checking that all nodes of fplist satisfy
the down-safety, expressions are inserted to make it fully redun-
dant (lines 16∼18), and then a ϕ function is inserted if the visiting
node is a dominance frontier of the one of the insert nodes (lines
19∼22). If ve is not partially redundant at n, line 26 uses the func-
tion SQCAP, which corresponds to Eq. 2, to determine the answer
at the entry point of this node by applying the meet operation to
the answers returned by the predecessors. If this result makes the
answer of this node false, the node is added to fplist as an in-
sertion candidate node. After adding nodes of fplist to FalseNs
such that it can be referenced globally, the value of visit[(ve, n)] is
returned (line 30).

4.4 Insertion
PDPRE inserts expressions according to the answers obtained

by query propagation. Therefore, after the answers are obtained
from all predecessors, the following steps are performed. Ini-
tially, the algorithm checks to see if the answers include true to
confirm the analyzing expression is at least partially redundant. If
the answers have false, it then checks to see if the predecessor that
returned the answer is down-safe. PDPRE analyzes the down-

© 2025 Information Processing Society of Japan 7

Journal of Information Processing Vol.33 1–12 (Mar. 2025)

Algorithm 3 Pseudo codes of NAvail
1: Function NAvail(e, ve, n)
2: if n is start
3: visit[(ve, n)]← false
4: return visit[(ve, n)]
5: alist ← [] // This is used for recording answers
6: fplist ← [] // For insertion
7: foreach p ∈ pred(n)
8: ep ← BUpdate(ve, n, p)
9: vep ← val(ep)

10: a← XAvail(ep, venp
, p)

11: alist.append(a)
12: if a = false | | a = ⊤
13: fplist.append(p)
14: if isPRedundant(alist) && PXDAns // Corresponding to Eq. 8
15: isPhiNode← false
16: foreach p ∈ fplist
17: p′ ← InsertNodeSelection(e, p)
18: Insert a new statement to p′

19: if dfront(p′, n)
20: isPhiNode← true
21: if isPhiNode
22: Insert a ϕ function to n
23: visit[(ve, n)]← true
24: FalseNs← []
25: else
26: visit[(ve, n)]← SQCAP(alist)
27: if visit[(ve, n)] = false
28: fplist.append(n)
29: FalseNs.extend(fplist)
30: return visit[(ve, n)]

safety by propagating queries that analyze the value number from
the insertion candidate node toward end to check down-safety.
This analysis is essentially the inverse of availability analysis.

The query first checks whether the analyzing value number ex-
ists in the visiting node, indicating that it examines the down-
safety at the entry point of the node. Even if the currently visited
node does not have the same value number, queries are propa-
gated to successors, meaning that the down-safety for succes-
sors is examined at the exit of the current node. These down-
safety conditions at the entry and exit of the nodes are denoted by
NDSafe(ve, n) and XDSafe(ve, n), respectively.

NDSafe(ve, n) is true if the value number ve appears in the cur-
rently visited node n. As the analysis of down-safety is per-
formed through query propagation, there can be cases in which
queries examining the same value number repetitively visit the
same node, such as within a loop. To prevent this repetition, a ta-
ble visit[(ve, n)] is used to record the results of query propagation,
similar to the availability analysis. If true or false is recorded in
this table, the result is returned before analyzing the value number
at n. Otherwise, XDSafe(ve, n) ensures that the results of queries
propagated to the successors become answers at the entry point
of this node. This definition is given in Eq. 4.

Algorithm 4 Selecting nodes for insertion
1: Function InsertNodeSelection(e, n)
2: blk ← n
3: min← Freq(n)
4: foreach fn ∈ FalseNs
5: if dom(fn, n) && min > Freq(fn) && ReachTVals(e)
6: blk ← fn
7: min← Freq(fn)
8: return blk

IsTrue
def
⇔ visit[(ve, n)] = true

IsFalse
def
⇔ visit[(ve, n)] = false

NDSafe(e, ve, n)
def
⇔

true if IsTrue
false if IsFalse
true if comp(ve, n)
XDSafe(e, ve, n) otherwise

(4)

XDSafe(e, n) propagates queries to successors; thus, it checks
whether there are variables used in the expression being analyzed
by the query are employed as arguments in ϕ functions in the
propagated node s. If such a ϕ function exists, the variable in the
expression of that query is replaced with the left-hand side of the
ϕ function, and the analyzed value number is also updated.

The rules of answer determination of XDSafe are defined as
follows: If it is down-safe at the entry point of all successors, it is
also down-safe at the exit of n. However, if n is an exit node, and
thus has no more successors, false is returned as the answer. The
following data-flow equation indicates these steps.

es
def
⇔ FUpdate(e, s, n)

ves

def
⇔ val(es)

SNDAns
def
⇔

∏
s∈succ(n)

NDSafe(es, ves , s)

XDSafe(e, ve, n)
def
⇔
 false if n = end

SNDAns otherwise
(5)

The function FUpdate updates the analyzing expression and its
value number when propagating queries to successors.

If the down-safety is satisfied, PDPRE performs the insertion.
The data-flow equation for Insert is defined as follows:

PXDAns
def
⇔

∏
p∈InsertCand(n)

XDSafe(ep, ve, p)

Avep

def
⇔ XAvail(e, ve, p)

NoTrue
def
⇔ | {Avep

= true | p ∈ pred(n)} | = 0 (6)

HasFalse
def
⇔ | {Avep

= false | p ∈ pred(n)} | > 0 (7)

Insert(e, ve, n)
def
⇔

false if NoTrue
PXDAns else if HasFalse
false otherwise

(8)

In the equation, | • | is the size of set •.
After deciding to perform the insertions, PDPRE determines

the specific insertion nodes. We present the pseudo-code that
searches for the node with the fewest executions to insert an ex-
pression in Algorithm 4. This function takes the predecessor n,

© 2025 Information Processing Society of Japan 8

Journal of Information Processing Vol.33 1–12 (Mar. 2025)

which has been determined to be the insertion point based on
Eq. 8, as an argument. The return value of this function is
node blk, where the expression is inserted. Lines 2∼3 initial-
ize blk with n, assuming that n is the node for expression inser-
tion, and min with the execution count of n. The loop at lines 4
to 7 iterates through nodes retrieved individually from the queue
FalseNs, which records nodes where the query returned false or
⊤. For each retrieved node fblk, it checks whether fblk domi-
nates n, whether the execution count of fblk is smaller than min,
and all terms of the expressions are usable at fblk. The function
ReachTVals(e) checks the usability of each term by traversing the
dominance tree. If all these conditions are true, fblk is chosen as
the insertion point for the expression.

5. Experimental Evaluation
5.1 Settings

To evaluate the effectiveness of PDPRE*1, we used the
COINS*2 compiler. All DDPREs including PDPRE treat pro-
grams in the SSA form as the targets of the LIR transformer. The
experiments were conducted on a machine equipped with an Intel
Core i7-8700K 3.70GHz CPU running the Ubuntu 64-bit oper-
ating system. The benchmark programs used for the evaluation
were selected from the SPEC CPU2000 benchmark. Although
the SPEC CPU2000 includes programs written in C++ and For-
tran, COINS does not support these languages. Therefore, we
initially selected programs for which COINS could produce valid
results. We first compiled all SPEC CPU2000 benchmark pro-
grams with no options. We confirmed that seven programs (gzip,
vpr, mcf, parser, gap, bzip2, and twolf) from CINT2000 and three
programs (art, equake, and ammp) from CFP2000 successfully
produced results. Therefore, the 10 programs were chosen from
these validated programs.

The algorithms employed in the experiments conducted are as
follows:
• PREQP: The processes are as follows: conversion to the

SSA form from the normal form, PREQP, and conversion to
the normal form from the SSA form.

• EDDPRE: The process steps are as follows: conversion to
the SSA form from the normal form, EDDPRE, and convert-
ing to the normal form from the SSA form.

• LDPRE: This converts from the normal form into the SSA
form, LDPRE, and converts from the SSA form back into
the normal form.

• PDPRE: This converts from the normal form into the SSA
form, PDPRE, and converts from the SSA form back into the
normal form.

5.2 Execution Count Information Collection
In this experiment, execution count information for each node

was collected using the cntbb option provided by the COINS
compiler. This option inserts an LIR instruction, which writes
the execution count of the node to a file when the node is exe-
cuted, into each node at compile time. Thus, for this experiment,

*1 The implemented programs are available in https://doi.org/10.5281/
zenodo.13363792

*2 https://sourceforge.net/projects/coins-project/

gzip

vpr

mcf

parser

gap

bzip2

twolf

art

equake

ammp

100 90 80 70 60 50 40 30 20

-10%

-100%

-1%

Fig. 8 Analyzing times of PDPRE changing the value of k by 10%.

LIR instructions for counting execution frequency were inserted
into the SPEC CPU2000 programs using the cntbb option alone.
The resulting programs were then executed to obtain the execu-
tion counts for each node. As cntbb provides the total number of
executed LIR instructions for each node, the counts obtained with
cntbb must be divided by the number of LIR instructions within
each node to determine the execution counts for the nodes.

5.3 Research Questions
We conducted the experiments based on the following research

questions (RQs):
• RQ1: How does the analysis time change when varying the

percentage k of the top k% of nodes with PDPRE applied?
• RQ2: How does the execution time of the objective code

change when varying the percentage k of the top k% of nodes
with PDPRE applied?

• RQ3: Which DDPRE algorithm requires the shortest analy-
sis time?

• RQ4: How many redundant expressions can PDPRE elimi-
nate compared with existing DDPREs?

• RQ5: Which DDPRE algorithm generates the objective
code with the shortest execution time?

First, we conducted an evaluation following RQs1∼2 to deter-
mine the most appropriate range of program for applying PDPRE.
Based on these results, we conducted a comparative evaluation of
the existing DDPREs and PDPRE following RQs3∼5.

5.4 Results

RQ1: How does the analysis time change when
varying the percentage k of the top k% of nodes with
PDPRE applied?
A1. As the value of k increases, the analysis time
also increases.
A2. As the value of k increases, the number of re-
dundant expressions eliminated also increases.

Figure 8 shows the variation in the analysis times of PDPRE
when parameter k is varied from 20% to 100% in increments of
10%. Logarithmic scales were employed to provide a detailed
visual representation of this variation. The analysis time when
k = 10 served as the baseline, depicted in blue for decreases in the
analysis time and red for increases. The horizontal axis represents
the values of k and the vertical axis represents the corresponding

© 2025 Information Processing Society of Japan 9

Journal of Information Processing Vol.33 1–12 (Mar. 2025)

103

104

100 90 80 70 60 50 40 30 20 10

gzip

vpr

mcf

parser

gap

bzip2

twolf

art

equake

ammp

Fig. 9 Number of eliminated redundancies by PDPRE changing the value
of k by 10%.

gzip

vpr

mcf

parser

gap

bzip2

twolf

art

equake

ammp

100 90 80 70 60 50 40 30 20

-4%

-3%

-2%

-1%

0%

1%

2%

3%

4%

Fig. 10 Execution times of objective codes generated by PDPRE changing
the value of k by 10%.

program instances.
In all programs, the observed trend indicated that, as the value

of the parameter k increased, the analysis time also tended to in-
crease. This phenomenon is natural because an increase in the
number of nodes visited by PDPRE results in a corresponding
increase in the generation of queries and analysis of redundant
expressions, thereby leading to an increase in analysis time. The
results summarizing the number of redundant expressions elimi-
nated when varying the value of k are presented in Fig. 9. The
horizontal axis represents the values of k, whereas the vertical
axis denotes the logarithmically scaled number of expressions
eliminated for each program. A thorough examination of this
figure further confirms that, for all programs, an increase in the
value of k correlates with a corresponding increase in the number
of eliminated expressions.

RQ2: How does the execution time of the objective
code change when varying the percentage k of the
top k% of nodes with PDPRE applied?
A1. The program with the most favorable execution
time was observed when the value of k was 10.
A2. Increasing the number of eliminated expressions
does not necessarily guarantee a reduction in execu-
tion time.
A3. An increase in the number of eliminated ex-
pressions is associated with a corresponding increase
in the number of spill occurrences and of executed
numbers of load/store instructions inserted by spills.

Figure 10 shows the variation in execution time of the gener-
ated objective codes when applying PDPRE when the parameter k
is varied from 20% to 100% in increments of 10%. In this figure,

103

102

gzip

vpr

mcf

parser

gap

bzip2

twolf

art

equake

ammp

100 90 80 70 60 50 40 30 20 10

Fig. 11 Numbers of register spill applied by PDPRE.

gzip

vpr

mcf

parser

gap

bzip2

twolf

art

equake

ammp

100 90 80 70 60 50 40 30 20

20%

0%

15%

10%

5%

Fig. 12 Numbers of executed load and store instructions inserted by spills
changing the value of k by 10%.

k=10 served as the baseline; blue and red mean that the execution
time was decreased and increased, respectively. The horizontal
axis represents the values of k, while the vertical axis denotes the
respective programs.

Upon examining the programs to identify the ones with the fast
favorable execution times, it was observed that the highest count
was achieved when k equaled 10. Specifically, this included the
programs mcf, bzip2, twolf, equake, and ammp. We specify the
values of k that yielded the best execution times for the other pro-
grams. For gzip, art, vpr, parser, and gap, the optimal results
were obtained at k=20, 20, 30, 40, and 40, respectively. In the
subsequent research questions comparing with existing DDPRE,
we present the results of PDPRE for k=10.

In order to understand the reasons behind the lack of execution
time reduction with increasing values of k, we counted the oc-
currence of spills in the register allocation process. The register
allocation algorithm utilized in the experiments conducted was
Appel-George’s iterated register coalescing, an improved version
of the graph coloring algorithm.

This register allocation algorithm analyzes the program stati-
cally to induce spills, without considering the number of program
executions. Thus, the store and load instructions inserted as re-
sults of spills were determined independently of the program’s
execution counts, implying that the occurrence of spills did not
directly impact the execution time of the objective code. How-
ever, existing research [5], [7], [13] has pointed out a tendency
for spills to worsen execution time; thus, this study also verified
this trend.

The results of the occurrence of spills are presented in Fig. 11.
The horizontal axis represents the values of k, while the vertical
axis, on a logarithmic scale, denotes the number of spills for each
program. As evident from the results, an increase in the number
of eliminated expressions corresponds to an increase in the num-

© 2025 Information Processing Society of Japan 10

Journal of Information Processing Vol.33 1–12 (Mar. 2025)

Table 1 Analyzing times. Bold letters indicate the best results.

Prog. PREQP EDDPRE LDPRE PDPRE

gzip 773 894 893 253
vpr 1,509 1,961 1,798 459
mcf 351 348 414 140
parser 1,366 1,617 1,615 453
gap 8,194 13,350 10,057 1,443
bzip2 295 495 462 108
twolf 5,775 8,448 6,914 1,615
art 131 159 126 57
equake 367 486 432 106
ammp 2,454 2,574 2,923 796

ber of spills. As a general trend, increasing the value of k was
associated with an increase in spills. Notably, when focusing on
instances where execution time deteriorated significantly, we can
observe that spills exhibited a pronounced increase at k=100 for
bzip2, k=100 for twolf, and k=30 for equake.

Next, Fig. 12 shows the total number of executed load and
store instructions inserted due to spills when the parameter k is
varied from 20% to 100% in increments of 10%. In this figure,
k=10 served as the baseline; red means that the executed instruc-
tions were increased. The horizontal axis represents the values of
k, while the vertical axis denotes the respective programs. Similar
to the occurrence of spills, the execution counts of these instruc-
tions increase with the value of k.

From the results presented in Figs. 10∼12, it is observed that
while reducing the number of redundant expressions is effective
for some programs (e.g., gap and art), there are programs where
an increase in spills is associated with a deterioration in execu-
tion time. Thus, there is a trade-off between reducing the number
of redundant expressions and the increase in load and store in-
structions inserted by spills. As this trade-off varies depending
on the program, a key direction for future work will be to en-
hance the effectiveness of PDPRE by identifying which program
structures exhibit this trade-off and adjusting the value of k ac-
cordingly based on the specific characteristics of the program.

RQ3: Which DDPRE algorithm requires the short-
est analysis time?
A. For all programs, PDPRE exhibited the shortest
time.

Table 1 presents the analysis times for all DDPREs. Across all
programs, PDPRE consistently yielded the shortest results. The
average overall improvement rate calculated showed that PDPRE
reduced the analysis time by 71.4%. When comparing the analy-
sis times of PDPRE with those of existing DDPRE methods, the
program with the highest reduction efficiency was gap, with an
average reduction of 85.7%. Specifically, PDPRE reduced analy-
sis time on average by approximately 67.7% compared to PREQP,
74.0% compared to EDDPRE, and 72.6% compared to LDPRE.

RQ4: How many redundant expressions can PDPRE
eliminate compared with existing DDPREs?
A. PDPRE eliminated redundancy to a similar extent
as PRE.

Table 2 Numbers of eliminated expressions. Bold letters indicate the most
numbers of eliminated expressions.

Prog. PREQP EDDPRE LDPRE PDPRE

gzip 804 1,196 984 471

vpr 2,974 4,190 3,535 1,492

mcf 232 378 282 199

parser 1,838 2,242 2,136 526

gap 26,594 34,578 28,901 6,452

bzip2 669 974 807 411

twolf 9,138 12,249 9,964 4,584

art 295 449 359 266

equake 847 1,470 993 1,240

ammp 3,927 5,113 4,247 2,730

Table 3 Execution times. Bold letters indicate the best results.

Prog. PREQP EDDPRE LDPRE PDPRE

gzip 75.3 76.9 77.2 73.5
vpr 50.8 53.3 53.2 51.1

mcf 24.4 24.1 24.1 23.5
parser 115 115 116 113.1
gap 59.1 59.1 59.4 60.1

bzip2 58.2 58.6 58.4 56.3
twolf 86.3 85.1 82.5 83.2

art 20.8 21.3 24.8 21.8

equake 33.8 32.2 40.5 31.6
ammp 80.9 78.7 81.4 79.8

Table 2 displays the number of redundant expressions elimi-
nated by all DDPREs. The algorithm that eliminated the highest
number of expressions was EDDPRE. This is because EDDPRE
performs GVN and speculative movement of loop-invariant ex-
pressions; these features are capable of eliminating more redun-
dancies than other DDPREs.

Focusing on the number of redundant expressions eliminated
by PDPRE, it is observed that, compared to EDDPRE, PDPRE
eliminated fewer expressions across all programs. On average,
the number of expressions eliminated by PDPRE decreased by
approximately 55.4%. Notably, in the case of gap, this reduction
amounted to about 81.3%. Comparing the numbers of PREQP
and LDPRE, PDPRE eliminated fewer expressions than these al-
gorithms in programs except for equake. In the case of equake,
it is notable that GVN demonstrated higher expression elimina-
tion, suggesting the presence of considerable redundancy within
the nodes of this program.

RQ5: Which DDPRE algorithm generates the ob-
jective code with the shortest execution time?
A. PDPRE obtained the most number of programs
achieving the shortest execution time.

Table 3 presents the execution times of the objective code gen-
erated by all DDPREs. The application of PDPRE resulted in
the shortest execution times for five programs: gzip, mcf, parser,
bzip2, and equake. Additionally, PDPRE achieved the highest
count of programs with the shortest execution times.

In order to investigate the reasons why the abundance of elimi-
nated expressions did not necessarily contribute to execution time
reduction, Tab. 4 presents the number of spills that occurred. This
result also shows that PDPRE had the best results according to the
number of programs with the fewest occurrences of spills.

© 2025 Information Processing Society of Japan 11

Journal of Information Processing Vol.33 1–12 (Mar. 2025)

Table 4 Numbers of register spill. Bold letters indicate the best results.

Prog. PREQP EDDPRE LDPRE PDPRE

gzip 115 162 172 121

vpr 679 896 944 644
mcf 74 109 103 80

parser 305 433 442 290
gap 2,119 3,628 3,899 2,037
bzip2 108 186 175 103
twolf 839 1,321 1,285 837
art 30 46 39 31

equake 50 133 125 89

ammp 427 699 685 410

6. Conclusions
In this study, we propose profile-guided demand-driven partial

redundancy elimination (PDPRE), which leverages runtime infor-
mation for the elimination of partial redundancies. PDPRE pri-
oritizes the elimination of redundancies in programs with higher
execution counts. During this process, PDPRE generates queries
for analyzing the availability of the value number for each expres-
sion to identify redundancies in expressions with different lexical
forms. The insertion points, aimed at eliminating redundancies,
are selected from among the candidate nodes, prioritizing those
with the lowest execution counts.

To evaluate the effectiveness of PDPRE, we applied PDPRE
and existing DDPREs to the SPEC CPU2000 benchmark pro-
grams. We measured the analysis time and execution time of
the generated objective codes. The results indicated that PDPRE
retains the characteristic of DDPRE with shorter analysis times
while achieving reductions for many programs in execution time
compared algorithms.

The future work will (a) involve extending the algorithm to
address redundancies that cannot be eliminated by PRE, such
as scalar replacement. Furthermore, as indicated by the results
of RQ2, future work will also (b) propose a machine learning
method for dynamically determining the value of k to enhance
the effectiveness of PDPRE could be considered.

Acknowledgments. We appreciate the anonymous reviewers
for their constructive and positive feedback on the content of this
paper.

References
[1] Appel, A. W.: Modern Compiler Implementation in ML: Basic Tech-

niques, Cambridge University Press, New York, NY, USA (1997).
[2] Bodik, R., Gupta, R. and Soffa, M. L.: Complete removal of redundant

expressions, PLDI ’98, New York, NY, USA, ACM, pp. 1–14 (1998).
[3] Cai, Q. and Xue, J.: Optimal and efficient speculation-based partial re-

dundancy elimination, Proceedings of the international symposium on
Code generation and optimization: feedback-directed and runtime op-
timization, CGO ’03, Washington, DC, USA, IEEE Computer Society,
pp. 91–102 (2003).

[4] Chow, F., Chan, S., Kennedy, R., Liu, S.-M., Lo, R. and Tu, P.: A New
Algorithm for Partial Redundancy Elimination Based on SSA Form,
Proceedings of the ACM SIGPLAN 1997 Conference on Programming
Language Design and Implementation, PLDI ’97, New York, NY,
USA, Association for Computing Machinery, pp. 273–286 (1997).

[5] Gupta, R. and Bodı́k, R.: Register Pressure Sensitive Redundancy
Elimination, Compiler Construction (Jähnichen, S., ed.), Berlin, Hei-
delberg, Springer Berlin Heidelberg, pp. 107–121 (1999).

[6] Horspool, R. N., Pereira, D. J. and Scholz, B.: Fast Profile-Based
Partial Redundancy Elimination, Modular Programming Languages
(Lightfoot, D. E. and Szyperski, C., eds.), Berlin, Heidelberg, Springer
Berlin Heidelberg, pp. 362–376 (2006).

[7] Knoop, J., Ruthing, O. and Steffen, B.: Lazy code motion, Proceed-
ings of the ACM SIGPLAN 1992 conference on Programming lan-
guage design and implementation, PLDI ’92, New York, NY, USA,
ACM, pp. 224–234 (online), DOI: 10.1145/143095.143136 (1992).

[8] Knoop, J., Ruthing, O. and Steffen, B.: Optimal code motion: theory
and practice, ACM Trans. Program. Lang. Syst., Vol. 16, No. 4, pp.
1117–1155 (online), DOI: 10.1145/183432.183443 (1994).

[9] Krause, P. K.: Lospre in Linear Time, Proceedings of the 24th Inter-
national Workshop on Software and Compilers for Embedded Systems,
SCOPES ’21, New York, NY, USA, Association for Computing Ma-
chinery, pp. 35–41 (online), DOI: 10.1145/3493229.3493304 (2021).

[10] Morel, E. and Renvoise, C.: Global optimization by suppression of
partial redundancies, Commun. ACM, Vol. 22, No. 2, pp. 96–103
(1979).

[11] Odaira, R. and Hiraki, K.: Partial Value Number Redundancy Elimi-
nation, Languages and Compilers for High Performance Computing,
Berlin, Heidelberg, Springer Berlin Heidelberg, pp. 409–423 (2005).

[12] Rosen, B. K., Wegman, M. N. and Zadeck, F. K.: Global value
numbers and redundant computations, Proceedings of the 15th ACM
SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, POPL ’88, New York, NY, USA, ACM, pp. 12–27 (1988).

[13] Shobaki, G., Bassett, J., Heffernan, M. and Kerbow, A.: Graph Trans-
formations for Register-Pressure-Aware Instruction Scheduling, Pro-
ceedings of the 31st ACM SIGPLAN International Conference on
Compiler Construction, CC 2022, New York, NY, USA, Associa-
tion for Computing Machinery, pp. 41–53 (online), available from
⟨https://doi.org/10.1145/3497776.3517771⟩ (2022).

[14] Sumikawa, Y. and Takimoto, M.: Effective Demand-driven Partial
Redundancy Elimination, Information Processing Society of Japan
Transactions on Programming, Vol. 6, No. 2, pp. 33–44 (2013).

[15] Takimoto, M.: Speculative Partial Redundancy Elimination Based
on Question Propagation, Information Processing Society of Japan
Transactions on Programming, Vol. 2, No. 5, pp. 15–27 (2009).

[16] VanDrunen, T. and Hosking, A. L.: Value-Based Partial Redundancy
Elimination, Compiler Construction (Duesterwald, E., ed.), Berlin,
Heidelberg, Springer Berlin Heidelberg, pp. 167–184 (2004).

[17] Xue, J. and Cai, Q.: A Lifetime Optimal Algorithm for Speculative
PRE, ACM Trans. Archit. Code Optim., Vol. 3, No. 2, pp. 115–155
(2006).

[18] Yanase, Y. and Sumikawa, Y.: Lazy Demand-driven Partial Redun-
dancy Elimination, Journal of Information Processing, Vol. 31, pp.
459–468 (online), DOI: 10.2197/ipsjjip.31.459 (2023).

[19] Zhou, H., Chen, W. and Chow, F.: An SSA-based algorithm for opti-
mal speculative code motion under an execution profile, Proceedings
of the 32nd ACM SIGPLAN conference on Programming language de-
sign and implementation, PLDI ’11, New York, NY, USA, ACM, pp.
98–108 (online), DOI: 10.1145/1993498.1993510 (2011).

Takuna Uemura received his B.E.
degree in Computer Sciences from
Takushoku University in 2024. His re-
search interests include compiler and its
implementation.

Yasunobu Sumikawa received his B.S.
degree in Mathematics from Tokyo Uni-
versity of Science in 2010, and his M.S.
and Ph.D. degrees in Information Science
from Tokyo University of Science in 2012
and 2015, respectively. He is currently an
Associate Professor at the department of
computer science, Takushoku University,

Japan. His research interests lie on compiler, information re-
trieval, HistoInformatics, and machine learning for history learn-
ing support.

© 2025 Information Processing Society of Japan 12

