
Global Store Statement Aggregation
Tomohiro Sano

Dept. of Computer Science
Takushoku University

Tokyo, Japan
sumikawa.lab@gmail.com

Yasunobu Sumikawa
Dept. of Computer Science

Takushoku University
Tokyo, Japan

ysumikaw@cs.takushoku-u.ac.jp

Abstract—The memory hierarchy comprises main memory,
which can store a large amount of data, and cache memory,
which can access data at high speeds. By accessing data stored
in the same array continuously, we can use cache memory
without performing frequent data replacement from the main
memory, which is crucial for high-speed execution of programs.
In this study, we propose a novel code motion algorithm,
named global store statement aggregation (GSA), to improve
program execution by efficiently utilizing the memory hierarchy.
To achieve this, GSA moves each store statement referring to an
array immediately before the following store statements accessing
the same array. We implemented GSA in a real compiler and
evaluated it using sorting programs. The experimental results
indicate that our algorithm effectively reduces the number of
cache misses in comparison to a previous code motion algorithm.

Index Terms—code optimization, cache memory, code motion,
store instruction

I. INTRODUCTION

Most processors use cache memory and main memory. If
a processor stores the data to memory, it first checks cache
memory if there is an old data from the same memory address.
If the data exists, it is called write hit ; otherwise, it is called
write miss. There are two types of cache write policies: write-
through and write-back. In either method, if a write miss
occurs, it is necessary to perform cache line replacement to
maintain data consistency. This replacement requires accessing
the main memory; thus, the execution time of the program
becomes slower. This indicates that continuous accesses to
memory addresses close to each other, such as accessing to
the same array, are important to keep execution time fast.

Fig. 1 shows a C program describing how the cache line re-
placement is performed. We here have following assumptions
that 1) the cache memory is designed as direct-mapped cache
although we can say the same logic to n-way associative, 2)
the cache write policy is write-back, and 3) any prefetch is
not executed. Looking at the C program, the first executed
statement is to store x to a[i]. As there is no a[i] data on
the cache memory at first, the processor copies the data with
the other data around a[i] from the main memory to the
cache memory. It then executes the store statement b[i]=y.
In the case where accessing b[i] requires the same cache line
as a[i], this execution causes a write miss; the processor re-
place the a[i] and a[i+1] with b[i] and b[i+1]. After
this replacement, the last statement a[i+1]=z is executed.

0011

0100

1011

1100

b[i]

b[i+1]

a[i]

a[i+1]

・・・

・・・

・・・

main(){

 a[i] = x;

 b[i] = y;

 a[i+1] = z;

}

A C program Cache memory Main memory

00

01

10

11 a[i] a[i+1]

Fig. 1. Example of the kind of cache miss on which our algorithm is focused.

This execution requires reloading a[i] and a[i+1] from the
main memory because the previous store statement b[i]=y
excluded the a[i+1] from the cache memory. If this program
switches the execution order of a[i] and b[i], it is possible
to prevent causing the write miss.

In this example, the replacement process was relatively
simple; however, in actual usage, data is overwritten only in
cache memory in case of a write hit. If a write miss occurs
under the situation where there is an inconsistency between
the cache memory and the main memory, additional processes
are performed to ensure that the consistency between the two
types of memories is not compromised.

In this study, we propose a novel cache optimization algo-
rithm to reduce the number of write misses by aggregating
store statements referring to the same arrays. We name the
proposed algorithm global store statement aggregation (GSA).
GSA delays executions of store statements without losing
continuous accessing to the same array. GSA analyzes the
delayability of each store statement one by one from the end
of the program to the start. We design this code motion as an
extension of partial dead code elimination (PDE) that sinks
assignment to eliminate dead codes [1].

Looking back to the example shown in Fig. 1, GSA first
analyzes the delayability of a[i+1]=z. As this statement is
the last, GSA does not delay it. GSA next analyzes whether
b[i]=y is delayable. Although this statement is delayable,
GSA does nothing to the statement because there is no
following store statement referring to the same array. Finally,

GSA analyzes a[i]=x’s delayability. Moving this statement
beyond statement b[i]=y would result in store statement
a[i+1]=z accessing the same array continuously.

To confirm the effectiveness of GSA, we implemented GSA
on a compiler infrastructure called COINS. We evaluated how
much continuous access ordering of store statements reduced
cache misses and improved execution times of objective codes.
This evaluation confirmed that GSA reduced the number of
cache misses and reduced execution time compared with PDE.

II. RELATED WORK

The effectiveness of cache memory is widely recognized,
and therefore, research is being conducted on architectural
designs that utilize cache memory, e.g., [2], and on improving
the efficiency of cache memory utilization. Focusing on the
latter research to improve cache memory utilization efficiency,
several methods have already been proposed as software and
hardware approaches. As GSA is a software approach-based
cache optimization, we here focus on previous software based
methods; a survey of the hardware based approaches is given
in [3].

Given the prevalence of multi-core processors and GPUs
in modern computing systems, various methods have been
proposed to achieve efficient cache reuse, even in complex
hardware configurations, by leveraging information from ac-
tual program execution. Lifflander and Krishnamoorthy pro-
posed an optimization algorithm for recursive programs [4].
This algorithm collects interference and dependencies by
tracking executions. After the information exploits data reuse
opportunities, the algorithm applies work-stealing scheduler
to improve efficiency of cache memory usage. Tripathy et al.
proposed PAVER that is a priority-aware vertex scheduler [5].
PAVER improves cache locality among thread blocks on GPU
by using execution profiling information. The information
is used for creating a graph whose nodes and edges are
corresponding to thread blocks and data sharing statistics,
respectively. PAVER performs graph partitioning for maximiz-
ing cache sharing within processors while maintaining load
balance between processors. The use of execution information,
as in these techniques, is effective for programs that can
be executed repeatedly. On the other hand, as GSA does
not require execution information, it can work effectively
in environments where such information is not available. In
addition, these profile-guided methods and GSA are usable at
once because GSA improves spatial locality before applying
the profile-guided ones; it is thought that the effectiveness of
other methods can be further enhanced.

Looking at compiler optimization methods, a code motion-
based cache optimization technique, named global load in-
struction aggregation (GLIA), is proposed [6], [7]. GLIA is
a method making continuous accesses to the same arrays as
well as GSA; however, its target is different from GSA. GLIA
moves load statements accessing array references respecting
their access order to reduce the number of read miss by aggre-
gating array references. As GSA moves only store statements,

the combination of GSA and GLIA allows for many array
references accessed continuously.

III. BACKGROUND

This section first presents definitions GSA assumes. It then
describes PDE to present how PDE sinks each statement.

A. Preliminaries

Program representation. GSA assumes that all programs
are represented as intermediate representation. To ease presen-
tation, we represent all load and store statements as accessing
arrays, e.g., a[i] with address a and index i. Although the state-
ments may access structures in C language, GSA improves
their localities as well as array references. We represent load
statement as x = a[i]; that is, the right-hand side of statement
loads a data from array a[i] into a temporal variable x. On the
other hand, we represent store statement as a[i] = x; that is,
the right-hand side of statement stores a data from a temporal
variable x into array a[i].

Array reference extraction. GSA also assumes that the
right-hand side of store statement is a temporal variable. If a
function return value is stored into an array such as a[i] = f(),
GSA splits it into t = f() and a[i] = t. As another example,
if a statement includes array references in both right- and left-
hand sides of an assignment such as a[i] = a[j], GSA splits
it into t = a[j] and a[i] = t.

Control flow graph. Before applying GSA, we assume that
each program has been represented as a control flow graph
(CFG). A CFG is a quadruple (N, E, s, e). N is a set of nodes
with a single statement. E is a set of directed edges connected
to the nodes. Each edge is represented as (m,n) ∈ E ⊂ N × N,
where m and n are called a predecessor of n and a successor
of m, respectively. In general, there are several predecessors
and successors for a node, because of the nondeterministic
branching structure of a CFG. The sets of predecessors and
successors of node n are denoted by node sets pred(n) and
succ(n), respectively. s and e are a start and an end nodes
with empty statements, respectively.

Similar to other code motion algorithms [8], CFG excludes
all critical edge that leads from a node with more than one
successor to a node with more than one predecessor by
inserting a synthesized node to each critical edge, because
critical edges can block code motion.

B. Partial Dead Code Elimination

PDE is an extension of dead code elimination (DCE) [9]
that eliminated only totally dead assignments to be able to
eliminate partially dead assignments. If a variable is defined
in an assignment, but there is no usage of the variable on all
execution paths from the definition point to e, then the variable
and the assignment are called totally dead or simply dead. If
a variable is used on several execution paths, but not all, from
the definition point to e, the variable and the assignment are
called partially dead.

Figs. 2 and 3 show how PDE eliminates partially dead codes
by delaying assignments. Looking at the Fig. 2, Node 1 has

1 y=a+b

32 y=

4 out(y)

Fig. 2. An original program

1

32 y=

4 out(y)

y=a+b

Fig. 3. Result of PDE

an assignment y=a+b. This variable y is used on Node 4 if
the control flow includes Node 3. By contrast, it is not used
on a path including Node 2 as Node 2 has another assignment
defining y; thus, the variable y is partially dead. PDE sinks
y=a+b from Node 1 to immediately before Nodes 2 and 3, and
then eliminates the sunk assignment on Node 2. As a result,
PDE obtains the CFG shown in Fig. 3. Thus, PDE eliminates
partially dead by performing two steps: code sinking and DCE.

We now present formal definitions to perform PDE. In the
definition, we regard v = t as a partially dead assignment
eliminated by PDE. PDE defines three predicates: Dead(n, v),
Delayed(n, v), and Insert(n, v). Dead(n, v) represents that v
is considered as totally dead. Delayed(n, v) means that v is
sinkable at node n. In the following, we use sink and delay
interchangeably; we use sink to describe the intuitive behavior
of the algorithm and delay to describe the definition of the
data-flow equation. Insert(n, v) indicates that PDE inserts v
at n. PDE iteratively performs DCE using Dead(n, v) and
assignment sinking using Delayed(n, v) and Insert(n, v) until
the program becomes invariant.

These predicates are calculated by using two local pred-
icates Used(n, v) and Mod(n, v). Used(n, v) indicates that
node n includes an statement containing v without updating
value of v . Mod(n, v) indicates that node n includes an
statement updating a value of v . These predicates mean that the
sinking of v beyond that nodes may change the meaning of the
program; the sinking must be blocked. To preserve program
semantic, PDE forbids code sinking beyond statements that
uses v or modifies x or t. The predicate Block(n, v) represents
this forbidding. The formal definition of Block(n, v) is given
as follows:

Block(n, v)
def⇔ Used(n, v) ∨Mod(n, v)

Looking at Fig. 2, Node 2 has a statement y= that modifies
the variable v that is a left-hand side of the sinking statement
y=a+b. PDE sinks the statement before the Node 2, and then
eliminates the statement because it becomes totally dead. The
deadness is calculated as follows: 1) it first checks if the result
of sinking before the Node 2 has not any statement using
y, and 2) its successor 2 modifies the y; thus, Dead(2, y)
becomes true. These results indicate that the immediately
following statement makes the sunk assignment dead; the data-
flow equation about Dead(n, v) captures this. The predicate

Delayed represents the delayability. It first analyzes that there
is a target statement represented by Cand(n, v). It then sinks
as close as possible to the e by analyzing whether there is
no blocking statements or whether successors also permits the
sinking. As a result of the delayability analysis, PDE inserts
the statement to the closest nodes to e represented by Insert .

The data-flow equations of three predicates Dead(n, v),
Delayed(n, v), and Insert(n, v) are defined as follows:

Dead(n, v)
def⇔ ¬Used(n, v) ∧

(Mod(n, v) ∨
∏

s∈succ(n)

Dead(s, v))

Delayed(n, v)
def⇔ Cand(n, v) ∨

(n ̸= s) ∧ ¬Block(n, v) ∧
∏

p∈pred(n)

Delayed(p, v)

Insert(n, v)
def⇔ Delayed(n, v) ∧

(Block(n, v) ∨
∑

s∈succ(n)

¬Delayed(s, v))

IV. SINKING ARRAY REFERENCES

This section presents the detail algorithm of GSA extended
by PDE. The intuitive idea is to extend Delayed to check
the order of arrays referenced from the store statement and
to make the access order continuous. To achieve the idea, we
introduce local predicates for checking the array addresses and
global predicates for preserving the order of array references.
In this section, we assume that GSA is analyzing predicates
for ar = t on node n.

A. Local Predicates

To check array addresses and delayability, GSA introduces
five local predicates Store(n), isSame(n), Mod idx (n, ar),
Modar (n, ar), and Blocks(n). The predicate Store(n) rep-
resents that n includes a store statement. The predicate
isSame(n) analyzes that the statement of n is a store statement
and its left-hand side is lexical equal to ar. This is formally
defined as follows:

isSame(n)
def⇔ Store(n) ∧ lhs(n) = ar

where lhs(n) is a function returning the left-hand side of
assignment statement. If the statement of n is not assignment
statement, the function returns ⊥. Thus, this predicate first
checks whether n has a store statement. It then checks if the
left-hand side of the statement equals to ar.

Fig. 4 shows how GSA analyzes local predicates for sinking
the store statement a[i]=x on Node 1. This store statement
should be sunk as the following store statement b[i]=y
breaks the accessing to array a consistency. To invoke code
sinking, the GSA initially examines the local predicates in
order to determine the node at which a store statement exists,
the array to which the store statement refers, and the potential
presence of any statements that may block sinking. Looking
at Node 2, there is a store statement b[i]=y and its access-
ing array is different from a[i]=x. For representing these

2

1

3

a[i] = x

4

b[i] = y

i++

a[i]=z

Store: true

Mod
ar
: false

Store: true

Mod
ar
: true

Mod
idx

: true

5

6

i++

b[i]=z

7 a[i]=z

Mod
idx

: true

Store: true

Mod
ar
: false

Store: true

Mod
ar
: true

Fig. 4. Local predicates for a[i]=x

analyzing results, GSA sets Store(2) as true and Modar (2,a)
as false. The Modar indicates that any of the elements of the
analyzing array ar is modified; the predicate should be false as
the store statement b[i] does not change the value of array
a. Next, GSA analyzes Node 3. This node updates the value of
the variable used in a[i]. To represent this update, GSA sets
Mod idx (3,a) as true because this statement defines a value of
i used as the index of a[i]. Finally, Node 4 includes a store
statement accessing to a. GSA sets Store(4) and Modar (4,a)
as true.

Modar (n, ar) analyzes that the statement of n is a store
statement but it analyzes only the equality of the array address
a. The formal definition is given as follows:

Addrl(n)
def⇔ TopAddr(lhs(n))

Addrar
def⇔ TopAddr(ar)

Modar (n, ar)
def⇔ Store(n) ∧ Addrl(n) = Addrar

where TopAddr(ar) returns the start address of ar if ar is an
array; otherwise, it returns ⊥.

When sinking a store statement, we need consider two types
of changes: changing the data in the array and changing the
value of a variable used as an array index. To capture the latter
case, we define Mod idx as follows:

Mod idx (n, ar)
def⇔ Def (n) ∈ Var(ar)

where Var(ar) is a function extracting variables used in
ar. For example, when Var(a[i]) is performed, the function
returns i. Def (n) is a function returning a variable that is
defined on n.
Blocks(n) represents that n includes blocking statement for

ar and variables used in ar. This predicate is formally defined
as follows:

Modgsa(n, ar)
def⇔ Modar (n, ar) ∨Mod idx (n, ar)

Blocks(n, ar)
def⇔ Used(n, ar) ∨Modgsa(n, ar)

2

1

3

a[i] = x

4

b[i] = y

i++

a[i]=z

5

6

i++

b[i]=z

7 a[i]=z

InCont: true

Cont: true

Cont: true
InCont: true

(a)

2’

3

4

2 b[i] = y

a[i] = x

i++

a[i]=z

5

6

i++

b[i]=z

7 a[i]=z

(b)

Fig. 5. (a) Global predicates for a[i]=x. The gray area represents the range
where access to the array a becomes continuous when this store statement is
sunk. (b) Result of GSA.

B. Global Predicates

GSA introduces a novel global predicates Cont and InCont
and extends Delayed of PDE to use them. The intuitive idea
of Cont is that the first following store statement refers to
the same array as ar. On the other hand, InCont represents
that the immediately preceding store statement refers to the
different array from ar. By using these predicates, it is possible
to analyze the range of continuous accesses to the same array
by sinking of GSA.

Fig. 5 (a) shows the results of global predicate analyses of
GSA for the store statement on Node 1. GSA first analyzes
the Cont predicate to identify the start points of ranges that
can continuously refer to ar between e and the ar = t. It
then identifies the end points of the ranges represented by the
InCont predicate. In this example, Node 4 includes an array
access to a and the continuous access to the array continues
since Node 2. After analyzing the array access flows, GSA
finds three points on Node 3: 1) the access order is broken
in the forward direction, 2) the access order is preserved in
the backward direction, and 3) the code sinking beyond Node
3 is prohibited. These results indicates that sinking a[i]=x
to immediately before Node 3 makes array accessing to a
continuous without changing the semantics of the program as
shown in Fig. 5(b).

GSA modifies Delayed to check whether the array access
continuous condition, represented by AAC , is satisfied. As
the two predicates Cont and InCont identify the ranges that
can continuously refer to ar, sinking ar = t into the ranges
satisfies the condition; thus, this condition is formally defined

as follows:

Cont(n, ar)
def⇔ Modar (n, ar) ∨

¬Modar (n, ar) ∧
∑

s∈succ(n)

Cont(s, ar)

InCont(n, ar)
def⇔

¬Modar (n, ar) if Store(n)∑
p∈pred(n)

InCont(p, ar) otherwise

AAC (n, ar)
def⇔ InCont(n, ar) ∧ Cont(n, ar)

GSA uses the AAC as follows:

Delayed(n, ar)
def⇔

true if Cand(n, ar)
false else if n = s
false else if Blocks(n, ar)∑
s∈succ(n)

¬AAC (s, ar) else if AAC (n, ar)∏
p∈pred(n)

Delayed(p, ar)otherwise

C. Application to the Overall Program

GSA performs the sinking analysis for each store statement.
GSA finds the statement one by one with reverse topological
sort order traversing on CFG. This analysis style is called
demand-driven analysis. Traditional PDEs are designed as an
exhaustive analysis that determines the deadness/faintness of
all expressions using bit vectors and checking lexical equality.
In general, application of code sinking exposes new dead/faint
codes, known as the second order-effect. Thus, to discover
many dead/faint codes, many PDEs must be applied; however,
reflecting the second order-effect requires more analysis time
[1]. By contrast, demand-driven analysis is proposed to reflect
many of the second order-effects in one application [10].

Figs. 6 ∼ 8 show the order in which GSA sinks the store
statements. Looking at Fig. 6, GSA first checks whether there
is a store statement on Node 5. This node has a store statement;
however, it does nothing as this node does not have any
successors. It next checks the existence of a store statement
on Node 4. As there is no any statements on this node, it then
checks Node 3. Node 3 does not include any store statement,
GSA skips code sinking analysis on the node. GSA finds a
store statement b[i]=y on Node 2; thus, GSA analyzes the
local and global predicates, and then sinks it to immediately
before Node 5 as shown in Fig. 7. Finally, GSA finds a store
statement a[i]=x on Node 1. As this store statement is
partial dead, GSA sinks this statement to immediately before
Node 3. As results of these code sinking, GSA obtains the
program shown in Fig. 8.

V. EXPERIMENTAL EVALUATION

A. Experimental Setting

We implemented GSA as a low-level intermediate represen-
tation converter in a COINS compiler1.

We conducted the experiments on a machine equipped with
a Intel Corei7-11700 2.50GHz CPU and an Ubuntu 64bit

1https://sourceforge.net/projects/coins-project/

2

1 a[i] = x

b[i] = y

5 b[j]=0

3 use(a[i]) 4

Fig. 6. An original program

2

1 a[i] = x

b[i] = y

5 b[j]=0

3 use(a[i]) 4

Fig. 7. Result of sinking b[i]

3’ a[i] = x

5’ b[i] = y

5 b[j]=0

3 use(a[i]) 4

1

Fig. 8. Result of sinking a[i]

operating system. This CPU has three leveled cache memories,
L1d and Li1, L2, and L3 cache memories. Their sizes are: 384
KiB, 256 KiB, 4 MiB, and 16 MiB, respectively.

We use three programs2 named distcountsort (Count),
radixsort (Radix), and arrays (Array) for the evalution. The
Count and Radix are implementations of counting and radix
sorts, respectively. The Array is the program shown in Fig.
1. We have made modifications to the program of the figure
to enable it to operate within a loop structure.

To evaluate the effectiveness of GSA, we used PDE that

2The evaluated programs are available at: https://drive.google.com/drive/folders/
12QmcA-gcyeak6TXGaetEMwfpCXf0jf6O?usp=sharing

TABLE I
TNE NUMBER OF CACHE MISSES.

Program A. PDE B. GSA (A-B)/A
Count 25,480 25,266 0.84%
Radix 6,662 6,575 1.31%
Array 18,362 17,343 5.55%

TABLE II
TNE NUMBER OF LLC STORE MISSES.

Program A. PDE B. GSA (A-B)/A
Count 17,918 17,889 0.16%
Radix 1,200 1,171 2.42%
Array 11,661 11,450 1.81%

TABLE III
EXECUTION TIMES. THE UNITS IS SECOND.

Program A. PDE B. GSA (B-A)/A
Count 1564.8 1,342 14.24%
Radix 566.6 562.5 0.72%
Array 551.5 531.5 3.63%

applies array reference extraction, eliminating critical edges,
and PDE as a baseline.

B. Results

Tables I and II show the number of all cache misses and
last level cache (LLC) for the two algorithms, respectively. We
obtained these cache miss numbers by Performance analysis
tools for Linux (perf command)3. In both types of cache
misses, we can see that GSA obtained lower numbers of
cache misses for all three programs than PDE. In particular,
for the Array program, all cache misses were reduced by
approximately 5%. As the miss rate reduction for L3 cache
memory was approximately 1.8%, it can be seen that GSA
especially reduced the misses for L1 and L2 cache memories.
Focusing on misses in L3 cache memory, GSA reduced the
miss rate by approximately 2.4% for the Radix program.

Next, we evaluated the impact of reducing cache misses for
the execution time of the objective code. Table III shows the
times. In all programs, GSA achieved better results than PDE.
Particularly, Count showed the most significant improvement
in execution time, achieving a reduction of approximately 14%
compared to PDE. On the other hand, Radix, which was able
to reduce LLC misses the most, only achieved a reduction of
about 0.7% in execution time. To understand the reason better,
we checked these programs in detail.

We found that GSA moved one store statement
for each of the Radix and Count. Looking
at Radix, there are three store statements as
follows: tmp[box[kakunou[0]]]=data[i];
box[kakunou[1]]--; tmp[box[kakunou[1]]] =
data[i-1]; These store statements alternately access two

3https://manpages.ubuntu.com/manpages/kinetic/man1/perf.1.html

arrays, tmp and box; thus, sinking the first store statement
accessing to tmp beyond the box makes continuous
accesses to tmp. The Count program has the following
statements. res[box[data[i]]] = data[i];
box[data[i-1]]--; res[box[data[i-1]]] =
data[i-1]; GSA moved the first statement of res
beyond the box.

When comparing the two programs, the array reference
used in the load statement in Radix had a constant index,
while in Count, it was a variable index. We believe that
GSA improved the temporal locality of memory accesses by
aggregating stores. However, the impact on the execution time
of the objective code was influenced by the variation in the
spatial locality caused by differences in memory addresses
accessed each time the loop is executed.

VI. CONCLUSIONS & FUTURE WORK

In this paper, we proposed a novel code motion based cache
optimization algorithm, named global store statement aggre-
gation (GSA). GSA aims at reducing write misses by making
store statements accessing the same array continuously. We
have evaluated the effectiveness of GSA by measuring the
number of cache misses and the execution times of objective
codes. We confirmed that GSA obtained the best results
compared to previous code motion algorithms.

In future works, we will examine moving all store and
load statements at the same time. GSA and GLIA have been
proposed as methods to do these things, respectively. We
would like to investigate their combination in depth.

REFERENCES

[1] J. Knoop, O. Rüthing, and B. Steffen, “Partial dead code elimination,”
SIGPLAN Not., vol. 29, no. 6, pp. 147–158, jun 1994.

[2] L. Zhou, B. Lu, S. Zhang, and L. Qi, “Data cache optimization model
based on hbase and redis,” in Proceedings of the 3rd International
Conference on Data Science and Information Technology. New York,
NY, USA: Association for Computing Machinery, 2020, pp. 31–35.

[3] W. Zang and A. Gordon-Ross, “A survey on cache tuning from a
power/energy perspective,” ACM Comput. Surv., vol. 45, no. 3, jul 2013.

[4] J. Lifflander and S. Krishnamoorthy, “Cache locality optimization for
recursive programs,” in Proceedings of the 38th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation. New
York, NY, USA: Association for Computing Machinery, 2017.

[5] D. Tripathy, A. Abdolrashidi, L. N. Bhuyan, L. Zhou, and D. Wong,
“Paver: Locality graph-based thread block scheduling for gpus,” ACM
Trans. Archit. Code Optim., vol. 18, no. 3, jun 2021.

[6] Y. Sumikawa and M. Takimoto, “Global load instruction aggregation
based on code motion,” in 2012 Fifth International Symposium on
Parallel Architectures, Algorithms and Programming, 2012, pp. 149–
156.

[7] ——, “Global load instruction aggregation based on dimensions of
arrays,” Computers & Electrical Engineering, vol. 50, pp. 180–199,
2016.

[8] J. Knoop, O. Rüthing, and B. Steffen, “Lazy code motion,” in Proceed-
ings of the ACM SIGPLAN 1992 Conference on Programming Language
Design and Implementation. New York, NY, USA: Association for
Computing Machinery, 1992, pp. 224–234.

[9] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles,
Techniques, and Tools (2nd Edition). Addison Wesley, August 2006.

[10] Y. Sumikawa and M. Takimoto, “Effective demand-driven partial redun-
dancy elimination,” Inform Process Soc Jpn Trans Programm, vol. 6,
no. 2, pp. 33–44, aug 2013.

