
Journal of Information Processing Vol.31 1–12 (Aug. 2023)

[DOI: 10.2197/ipsjjip.31.1]

Regular Paper

Lazy Demand-driven Partial Redundancy Elimination

Yuya Yanase1 Yasunobu Sumikawa1,a)

Received: September 4, 2022, Accepted: May 2, 2023

Abstract: Partial redundancy elimination (PRE) is a code optimization algorithm that simultaneously performs com-
mon sub-expression elimination and loop-invariant code motion. Traditional PREs analyze the entire program and
eliminate redundancies. By contrast, demand-driven PRE (DDPRRE) is proposed as an algorithm to analyze only a
part of the program to determine whether each expression is redundant by query propagation. The previous DDPRE
reduces the analysis time because it limits the analysis range; however, it is known that redundancy may not be elimi-
nated when the nodes in the loop are revisited. We propose a novel DDPRE, named lazy demand-driven PRE (LDPRE),
which eliminates redundancy by delaying the decision of whether the analyzing expression is redundant or not when a
node in a loop is revisited and redundancy cannot be analyzed. LDPRE uses a semi-lattice as the answer space during
the query propagation. The semi-lattice includes not only true/false implying that the queried expression is redundant
or not, but also > for undecidability. While maintaining the analytical efficiency characteristic of demand-driven anal-
ysis, our algorithm eliminates redundancy that previous DDPRE could not eliminate by determining the answer using
semi-lattice.

Keywords: Code optimization, Compiler, Demand-driven data-flow analysis, Partial redundancy elimination

1. Introduction
Partial redundancy elimination (PRE) [3], [11], [13] is a pow-

erful optimization algorithm to eliminate not only fully redundant
expressions but also partially redundant ones by inserting the ex-
pressions to make partial redundancy, full redundancy. Owing
to this insertion process, PRE performs loop invariant code mo-
tion (LICM) because the loop invariant expressions are partially
redundant at the entry points of their loops; loop invariant expres-
sions are redundant in their loop whereas they are not on the path
before entering the loop.

Traditional PRE algorithms eliminate redundant expressions
by analyzing the whole program represented by the control flow
graph (CFG). By contrast, demand-driven PRE (DDPRE), named
PRE-based query propagation (PREQP) [20], has been proposed
to improve the analysis efficiency by analyzing only a part of the
program. PREQP visits each node of the CFG in topological sort
order. When an expression e occurs, the query analyzing redun-
dancy is propagated toward the root of the CFG. The query re-
turns true if the query visits an occurrence of the same expression
e. However, if no occurrence of the same expression is found,
false is returned as the answer. Because a query is simply propa-
gated to each predecessor, a query may visit the same node in the
loop twice. When it revisits a node without any occurrences of
statements that might change the value of e in the loop, it assumes
that the answer will be true and then optimistically returns true as
the answer. However, the optimistic returning fails to eliminate
redundancy if the loop containing the node contains multiple ex-
its.

1 Takushoku University, Tokyo, 193–0985, Japan
a) ysumikaw@cs.takushoku-u.ac.jp

1

2

3

4

56

7

8

y� = a� + 1

x� = a� + 1

true

false

false

T

T

T
Fig. 1 Query propagation of LDPRE. Arrows indicate query propagation.

The balloon represents the answer.

In this study, we propose a novel DDPRE, named the lazy
demand-driven PRE (LDPRE), that performs query answer de-
termination delaying. This algorithm returns true as the answer
to the query only when the expression actually occurs indicating
that the answer truly detected redundancy. If the same node is
revisited, it returns > instead of true indicating that the answer is
undefined. To define these answers systematically, we use semi-
lattice.

Fig. 1 shows how LDPRE performs query propagation. As
shown in this figure, we assume that all programs are converted
into static single assignment (SSA) form [7] before applying LD-
PRE. LDPRE propagates three queries for expression a1+1 on
Node 8 to paths that include Nodes 2, 4, and 7, respectively. The
query that visits Node 2 returns a true as a1+1 occurs on Node 2.
Looking at another query propagated to Node 3 through Node 4,
it is also propagated to Nodes 5, 6, and 3. At this time, Node 3 is

© 2023 Information Processing Society of Japan 1

Journal of Information Processing Vol.31 1–12 (Aug. 2023)

1

2

3

4

56

7

8

y = a + 1 t = a + 1

t" = a + 1

t#=φ(y₁,t₁,t₂)
x =t#

Fig. 2 Result of LDPRE

visited again, the query in LDPRE returns > to Nodes 6, 5, and
3. As false is returned from Node 1 to Node 3, LDPRE obtains
> and false at Node 3. According to the definition of the opera-
tor on the semi-lattice, the final answer at Node 3 becomes false;
then, this answer is also returned to Nodes 4 and 8. Next, LDPRE
propagates a query from Node 8 to Nodes 7 and 6. As this is the
second time of visiting Node 6 for this query, > is returned from
Node 6 to Nodes 7 and 8. Finally, LDPRE obtains true, false, and
> as answers at Node 8. As the obtained answers include true and
false, we can say that a1+1 is partially redundant. Once LDPRE
inserts t1=a1+1 and t2=a1+1 to Nodes 4 and 7 where false and
> are returned, it makes the partial redundancy, full redundancy.
After inserting a φ function at the entry of Node 8, LDPRE elimi-
nates the partial redundancy by replacing a1+1 with the left-hand
side of the φ function (see Fig. 2).

We implemented LDPRE on a compiler infrastructure called
COINS and compared analysis efficiency and the number of stat-
ically eliminated redundancies using SPEC CPU2000 benchmark
among LDPRE, PREQP, and traditional PRE analyzing whole
programs. We confirmed that LDPRE was faster than traditional
PRE in analyzing time and eliminated more redundancy than
PREQP.

The remainder of this paper is organized as follows. Section 2
presents the definitions we used. Then, Section 3 summarizes re-
lated works. Section 4 details our algorithm LDPRE, and Section
5 discusses the experimental results. Finally, Section 6 provides
the concluding remarks.

2. Background
2.1 Program Representation

We assume that a CFG was built for each program. The CFG
is represented as a quadruple (N, E, start, end), where N is a set
of basic blocks, E is a set of edges N × N, and start and end rep-
resent, respectively, a start node and an end node with an empty
statement. Sets of predecessors and successors of node n are de-
noted by pred(n) and succ(n). When all paths from start to node
n include a node m, it is said that m dominates n [2].

We also assume that each variable is defined exactly once by
assigning a unique version to it, known as SSA form, to simplify
the definitions of demand-driven data-flow analysis using semi-
lattice. In SSA form, to handle cases in which several definitions
can reach their uses, special functions φmust be inserted to merge
these definitions at their dominance frontiers.

1

3

2

(b) CFG after critical edge removing(a) Original CFG

1

2

Fig. 3 Eliminating critical edges

true false

Τ= {true, false}

⊥ = {}

> u true = true

> u false = false

true u false = ⊥

⊥ u true = ⊥

⊥ u false = ⊥

> u ⊥ = ⊥

> t true = >

> t false = >

true t false = >

⊥ t true = true

⊥ t false = false

> t ⊥ = >

Fig. 4 Algebra on lattice

We assume that all critical edges [18] that can block several
code motions were eliminated before applying LDPRE. The crit-
ical edge is an edge leading from a node with more than one suc-
cessor to a node with more than one predecessor. The critical
edges were eliminated by inserting synthesized nodes. Looking
at Fig. 3 (a), the edge from Node 1 to Node 2 is a critical edge.
This is eliminated by inserting a node, as shown in Fig. 3 (b).

2.2 Availability and Anticipability
Expression e is available at node n iff e is computed on any

path p from start to n, and no definitions are generated for e’s
operands as the most recent occurrence of e on p [3]. Here, we
use comp(e, n) and kill(e, n) that represent e was computed at n,
and n had definitions for e’s operands, respectively. When e is
available at n, n is up-safe with respect to e. e is partially avail-
able at node n iff there is at least one path from start to n in which
e is computed without subsequent redefinition of its operands.
When e is available at n, e is fully redundant and can be replaced
with the variable that comprises the preceding execution result.
When e is partially available at n, e is partially redundant. The
partially redundant expression is eliminated after inserting ex-
pressions to make the original expression fully redundant. This
paper uses Insert(e, n) if n is a node in which the statement includ-
ing e should be inserted. Expression e is anticipable at node n iff
e is computed along any path r from n to end, and the operands of
e are undefined before the first computation of e on r [3]. When
e is anticipable at n, n is down-safe with respect to e. PRE inserts
expressions at the down-safe nodes without extending the lengths
of any path.

2.3 Semi-lattice
Our query propagation determines answers defined on lattice

(A, u, t, >, ⊥), where A is a set of answers, u : A × A → A
is a meet operator on A, t : A × A → A is a join operator on
A, > ∈ A is a top element, and ⊥ ∈ A is a bottom element. For
all a ∈ A, the top and bottom elements are defined as > u a = a,
⊥ u a = ⊥, > t a = >, and ⊥ t a = a, respectively. Fig. 4 shows

© 2023 Information Processing Society of Japan 2

Journal of Information Processing Vol.31 1–12 (Aug. 2023)

relationships among A, >, and ⊥ and all combinations between
different elements and operators.

3. Related Works
3.1 Exhaustive PRE

There are numerous algorithms to eliminate redundancy [1],
[16]. Morel and Renvoise proposed the original PRE using
bi-directional analysis [13] to perform common sub-expression
elimination [6] and LICM simultaneously without distinction. It
is known that bi-directional analysis performs unnecessary code
motion or remains redundancies in the program. To solve these
issues, several studies have attempted to improve the original
PRE algorithm. Knoop et al. proposed lazy code motion (LCM)
[10], [11] that uses unidirectional analysis to find optimal and
economical insertion points. This algorithm decomposes the bi-
directional analysis into forward and backward analyses to sup-
press unnecessary code motion. As LCM respects that code op-
timization algorithms keep the meaning of the program, the in-
sertion points should be safe. However, respecting the safety
sometimes fails to eliminate redundancy as some insertions are
prohibited so as not to increase the number of executed expres-
sions on several paths. Bodik et al. proposed complete PRE [3]
to eliminate all redundancies by duplicating parts of the program
without losing the safety.

While the above algorithms are designed for normal form of
programs, Chow et al. proposed SSAPRE [5] that allowed per-
forming PRE on programs represented by SSA form.

3.2 Speculative Code Motion
In environments that do not support error handling, as the

safety indicates that there are no paths that are lengthened by the
insertion of an expression, non-safety insertion does not change
the execution result of the program; it actually means that the
number of statements to be executed increases. The insertion
that presumably increases the number of executed statements is
called speculative code motion. As LCM and complete PRE
check down-safety before their insertions, these algorithms pre-
vent any speculative code motion. Although the number of state-
ments to be executed in some execution paths may increase, Cai
and Xue proposed MC-PRE [4], [22] that performs speculative
code motion. MC-PRE applies min-cut to the CFG to determine
insertion points where eliminating redundancy on paths that are
frequently executed. The actual insertions may lengthen some
execution paths; however, it has been shown to reduce the execu-
tion time of the objective code because statements are inserted at
points of infrequent execution.

These algorithms are powerful; however, it is well-known that
they require much analysis time. In fact, several speculative PREs
have been proposed to reduce analysis time [4], [9], [12]. Many
of these algorithms reduce analysis time at the expense of redun-
dancy that can be eliminated. The state-of-the-art algorithm of
speculative PRE is proposed by Krause [12]. This algorithm uses
the bounded tree-width of CFG to achieve faster analysis while
obtaining the same execution time as MC-PRE.

These past studies including methods of Section 3.1 analyzed
whole programs to find redundancy. Therefore, the above algo-

1

2

3 x = a + 1

a = read()

(a)

1

2

3 x = a + 1

true

false
a = read()

(b)

Fig. 5 (a) Loop invariant code motion by DDPRE. (b) Query answers for
loop invariant code motion in previous PREQP.

rithms assume that the priority is to reduce the execution time of
the objective code rather than to reduce the analysis time. On the
other hand, demand-driven algorithms including our algorithm
are effective in situations where it is important to achieve both re-
dundancy elimination, which correlate with execution time, and
short analysis time such as the just-in-time (JIT) compiler.

3.3 DDPRE
DDPRE was proposed as an algorithm for limiting the scope

of redundancy analysis. The original DDPRE (PREQP) performs
query propagation [16] to check whether each expression e is
available. First, PREQP traverses CFG in topological sort order.
If an expression e occurs during this traverse, PREQP propagates
a query Is the expression e available? This query returns true or
false according to finding the occurrence of the same expression.

Fig. 5 (a) shows how PREQP performs LICM by query prop-
agation. Looking at the expression a1+1 on Node 3 where the
node is included in a loop, it can be said that a1+1 is the loop
invariant because there are no definitions of the variable a1 in the
loop. PREQP propagates queries on two paths from Node 3 to
Node 3 and from Node 3 to Nodes 2 and 1. Fig. 5 (b) shows the
results of the queries. As the former query visits the original ex-
pression that generated the query, true is obtained from the query.
By contrast, false is obtained from the query propagated on the
path containing Nodes 2 and 1 as the query does not find any
occurrences of the expression a1+1 on the path. These answers
indicate that the expression a1+1 is partially redundant at Node
3; therefore, it is able to make the redundancy full redundancy by
inserting t1=a1+1 at Node 2 where false is obtained.

Furthermore, PREQP optimistically returns true when the
query for the same expression is propagated to the same node
twice to perform LICM. Fig. 6 shows an example to explain why
PREQP performs this optimistic answer decision. We assume
that the e on Node 4 is a loop invariant code. PREQP propagates
a query for this expression from Node 4 to Node 2. The query
further visits Node 1, and returns false because there is no occur-
rence of the same expression. After visiting Node 5 from Node 2,
the query visits Nodes 3 and 4. As the Node 4 includes the same
expression, the query returns true. On the other hand, the query
visits Node 2 from Node 3; this is the second time of visiting
Node 2. As this query does not meet any definitions of e during

© 2023 Information Processing Society of Japan 3

Journal of Information Processing Vol.31 1–12 (Aug. 2023)

1

2

3

5

4 e

Fig. 6 Optimistic answer decision of PREQP

1

2

3

4

56

7

8

y = a + 1

x = a + 1

true

false

false

true

true

true

Fig. 7 Query propagation of previous DDPREs

the propagation, PREQP decides that this query returns true. As
queries return true from both Nodes 3 and 4, the query also re-
turns true from Node 5. PREQP obtains true and false at Node 2;
thus, inserting a new statement to Node 1 performs LICM for the
e.

Next, Fig. 7 shows an example of redundancy that PREQP fails
to eliminate. We examine at a1+1 on Node 8. This expression is
partially redundant because the same expression exists on Node
2; however, there are no expressions on all paths from Node 1 to
Nodes 4 or 7. If the PREQP propagates a query on the path con-
taining Nodes 8 and 2, the query returns true as a1+1 occurs in
Node 2. When the PREQP propagates a query on a path contain-
ing Nodes 8, 4, 3, and 1, false is obtained as Node 1 represents the
start of the program. During the propagation, the query is also
propagated from Node 3 to Node 5. Then, the query is propagated
to Nodes 6 and 3. As the query revisits Node 3 without meeting
the definitions of a1, this query returns true as the answer. PREQP
obtained true and false at Node 3 although its query propagation
does not meet the same expressions. Thus, concluding partial
redundancy at Node 3 from these answers could result in unnec-
essary code motion. Indeed, a1+1 is not partially redundant at
Node 3.

Figs. 8, 9, and 10 show how PREQP prevents the unnecessary
code motion. PREQP propagates a query for e from Node 4 to
Nodes 3 and 2. This query is further propagated to Nodes 2 and
1. As the visiting Node 2 is revisiting itself, the query returns
true. Visiting Node 1 finds that there is not the same expression
on the path; thus, it returns false. These results indicates that e
is partially redundant at Node 2; thus, inserting a new statement
to Node 1 makes e fully redundant. However, the ideal insertion

2

1

3

x =e4

Fig. 8 Example for preventing the unnecessary code motion of PREQP

2

1

3

x =e4

true false

Fig. 9 Answers

2

1

3

x =e4

true false

Fig. 10 Result

point is at Node 3. Inserting the statement at Node 1 increases
the register pressure. To suppress the unnecessary code motion,
PREQP checks actual occurrence if two answers, true and false,
are obtained before the insertion. In this example, there is no ac-
tual occurrence about e at neither Nodes 2 nor 1; thus, PREQP
returns false from Node 2 as shown in Fig. 10. Finally, PREQP
obtains true from the query propagated to Node 4 with the actual
occurrence and false from Node 3; inserting e to Node 3 elimi-
nates the partial redundancy.

Looking back to Fig. 7, the query revisited Node 3 from Node
6 returns true as the answer. However, the actual occurrence of
the expression is false. As a result, PREQP returns false from
Node 3 to Nodes 4 and 8 though true and false are obtained from
Nodes 5 and 1. After this propagation, PREQP also propagates a
query from Node 8 to Nodes 7 and 6. As the same query is al-
ready propagated to Node 6 in the previous propagation, it returns
the determined answer true from Node 6 to Nodes 7 and 8. Fi-
nally, as three answers, true, false, and true, are returned to Node
8, PREQP inserts t1=a1+1 only to Node 4, which returned false,
and replaces a1+1 on Node 8 with t1. However, this code motion
is erroneous because there is no t1=a1+1 on the path from Nodes
1 to 7. To prevent this wrong code motion, PREQP revokes the
insertion and replacement; PREQP does not eliminate the partial
redundancy in Node 8.

Sumikawa and Takimoto proposed effective DDPRE (ED-
DPRE) [19] that combines global value numbering [1] and
PREQP to analyze redundancy based on equivalence of value
numbers of expressions instead of lexical equivalence.

These DDPRE algorithms eliminated redundancies in a shorter
analysis time than PREs that analyzed the entire program. How-
ever, as only a part of the program was analyzed, it lacked avail-

© 2023 Information Processing Society of Japan 4

Journal of Information Processing Vol.31 1–12 (Aug. 2023)

5 6

32 x = a + 1

7 y = a + 1

4

1 a = read()

Is a₁+1 available?

Visited StatusNode

1

2

3

4

5

6

7

false

true

⊥
⊥
⊥

Fig. 11 Query propagation

ability information and might lead to incorrect program transfor-
mations, as described above.

Here, the proposed LDPRE uses semi-lattice to analyze redun-
dancy that previous DDPREs failed to eliminate, while retaining
the feature of the previous DDPREs of eliminating redundancies
in a short analysis time.

4. LDPRE
In this section, we describe how LDPRE eliminates redundant

expressions by query propagation. Similar to PREQP, LDPRE
propagates a query Is e available? toward the root of the CFG
for each occurrence of the expression e to analyze its redundancy.
Fig. 11 shows the propagation of a query over two paths contain-
ing Nodes 5 and 4 for the expression a1+1 on Node 7 and states
the answers obtained from all CFG nodes. Indeed, LDPRE uses
a table visited to record the answers obtained to prevent repeated
visits to the same node. Each time the query visits node n, LD-
PRE first checks if an answer is recorded in visited[(e, n)]. If an
answer is recorded, LDPRE returns a result without analyzing the
node; otherwise, LDPRE stores ⊥ to the table and then analyzes
the node in detail. Looking at the figure, this query propaga-
tion obtained false and true as answers in Nodes 1 and 2, respec-
tively. After obtaining the answer at each node, LDPRE stores it
to visited as shown in the visited status table. Looking at the other
Nodes 3, 4, and 5, the current visited statuses are ⊥ that indicates
none of true/false, because at this point these nodes are still being
analyzed by only propagating the query. Fig. 12 shows the result
of the answers obtained by this query propagation. Looking at
the query propagated from Nodes 4 to 2, the query returns true as
an answer because this query finds the same expression at Node
2. By contrast, a query returns false if the query is propagated
to the occurrence of an assignment statement to e operands or to
the start such as the propagation from Node 4 to Nodes 3 and 1.
Examining the results at Node 4, we observe that a1+1 is partially
redundant; thus, LDPRE inserts a statement t1=a1+1 into Node 3
where false is returned to make a1+1 fully redundant, and returns
true as the answer from Node 4. As a result, the answer at Node 4
is also returned to Node 5; the visited statuses of Nodes 3, 4, and
5 are false, true, and true, respectively, as shown in the table.

When a query is propagated from Node 7 to Nodes 6 and 4, as
shown in Figs. 13 and 14 (a), LDPRE obtains an answer true for
Node 4 by reference to visited. That is, each time the query is
propagated to Node n, if true or false is recorded in visited[(e, n)],

5 6

true

false

Insert

true

32 x = a + 1

7 y = a + 1

4

1 a = read()

true

Visited StatusNode

1

2

3

4

5

6

7

false

true

false

true

true

t = a + 1

t"=φ(x₁,t₁)

Fig. 12 Returning answers and determining insertion points

5 6

32 x = a + 1

7 y = a + 1

4

1 a = read()

Is a₁+1 available?

Visited StatusNode

1

2

3

4

5

6

7

false

true

false

true

true

true

t = a + 1

t"=φ(x₁,t₁)

Fig. 13 Query propagation to the other path

5 6

32 x = a + 1

7 y = a + 1

4

1 a = read()

true

t = a + 1

t"=φ(x₁,t₁)

(a)

5 6

32 x = a + 1

7 y = t"

4

1 a = read()

t = a + 1

t"=φ(x₁,t₁)

(b)

Fig. 14 (a) Revisiting to Node 4 and obtaining the answer. (b) Result.

the value is returned. If ⊥ is recorded in visited[(e, n)], > is re-
turned. Otherwise, LDPRE stores ⊥ in visited[(e, n)] and contin-
ues query propagation. As we assume that all programs are repre-
sented in SSA form, LDPRE propagates queries to predecessors
after replacing operands of e with the arguments of the φ func-
tion. This replacement changes the lexical representation of the
expression though the original query is the same. The above pro-
cedures about checking visited indicate whether visited records a
query about the same lexical representation of the expression that
has already been visited in the same node. Fig. 14 (b) shows the
result of the insertions and replacement by LDPRE.

As described in Fig. 1, when LDPRE revisits a node where
no answer is determined, it returns > to indicate that it is unde-
cided at this time. The intuitive idea is that when LDPRE obtains
answers to two or more queries later, using > that can represent
either true or false allows us deciding the final answer at the node
according to the other answers. Fig. 15 (a) presents statuses of

© 2023 Information Processing Society of Japan 5

Journal of Information Processing Vol.31 1–12 (Aug. 2023)

Visited StatusNode

1

2

3

4

5

6

7

false

true

Τ
⊥

8

Τ
Τ

Visited StatusNode

1

2

3

4

5

6

7

false

true

⊥
⊥
⊥

8

⊥

(a) (b)

Fig. 15 (a) visited statuses of Fig. 1 when the query is revisited to Node 3.
(b) visited statuses of Fig. 1 after the query revisiting to Node 3.

visited for the query propagation of Fig. 1 to describe how > is
used as answer. The status table makes the following three as-
sumptions: 1) queries had visited Nodes 2 and 1, 2) the query
visited Node 1 through Nodes 4 and 3, and 3) the query is decid-
ing the answer for Node 3 after visiting Nodes 5 and 6 because
Node 5 is the other predecessor of Node 3. At this time, the query
refers to the visited[(e, n)] and finds that ⊥ is recorded in the ta-
ble. This result indicates that the query revisited the same node;
it updates ⊥ to > of visited[(a1+1, 3)] and returns > as the an-
swer to Nodes 6, 5, and 3 as shown in Fig. 15 (b). Although
already described in Section 1, the subsequent determination of
the answer is as follows. As false and > are returned from Nodes
1 and 5, respectively, LDPRE applies the meet operator u for the
two answers (see Fig. 4 for details of the calculation results) and
obtains false as the answer for Node 3.

4.1 Data-Flow Equations
We now present formal definitions of query propagation used

in LDPRE. In the definitions, we assume that the query analyzes
the availability of the expression e of node n.

As LDPRE assumes that CFG nodes are basic blocks, we an-
alyze two types of availability: availability at the exit of node n
(XAvail(e, n)) and availability at the entry of node n (NAvail(e, n)).

XAvail(e, n) analyzes the occurrence of e in n and whether there
exists an assignment statement (kill) to the operand of e between
its occurrence and exit. At the beginning, XAvail(e, n) checks
whether a query on the same expression e has already been vis-
ited in node n. As we described the definitions of visited before
Section 4.1, it returns the answer according to the results of the
previous visit if the same query is already visited. If there is an
occurrence of e without encountering kill assignment statements,
the query returns true. If there is a kill assignment statement
or the propagated node n is start; then, the query returns false.
Looking at Fig. 12, this corresponds to the query propagation
to Node 1 as Node 1 is start. If there is neither an occurrence
of e nor kill assignment statements in n, LDPRE further propa-
gates the query to the predecessors. If the query is propagated to
predecessors, LDPRE determines its answer by NAvail(e, n).

The data-flow equation for XAvail is defined as follows:

XAvail(e, n)
def
⇔



> if visit[(e, n)] = ⊥

true else if visit[(e, n)] = true
false else if visit[(e, n)] = false
true else if comp(e, n)
false else if kill(e, n)
NAvail(e, n) otherwise

NAvail(e, n) collects the query answers obtained from the pre-
decessors of n. Similar to PREQP, if both true and false are ob-
tained, and nodes where false are obtained are down-safe, then
LDPRE performs expression insertion to convert the partial avail-
ability to full availability. After the insertion, it returns true as e
becomes fully available at the entry of node n. To do this, LDPRE
uses XAvail(e, p) to determine whether e is fully available at the
entry of the node n. Looking at Fig. 12, this situation corresponds
to the result of propagating two queries from Node 4 to Node 2
and from Node 4 to Nodes 3 and 1. Since LDPRE already has
both true and false as answers at the exits of Nodes 2 and 3, the
predecessors of Node 4, LDPRE performs insertions when de-
termining the answers of Node 4. As it inserts an expression at
Node 3 where false is returned as an answer to the query, LDPRE
returns true as an answer at Node 4.

Following equation presents the data flow equation for NAvail.

enp

def
⇔ BUpdate(e, n, p)

NAvail(e, n)
def
⇔


false if n = start
AllPDSafe(e, n) else if Insert(e, n)∏
p∈pred(n)

XAvail(enp , p) otherwise

where BUpdate(e, n, p) is a function that replaces the operand of
e with the argument of the φ function corresponding to node p
to propagate the query to p if node n has a φ function defin-
ing the operand of e. AllPDSafe(e, n) is a function that re-
turns true if all predecessors of n, into which the expression is
inserted, satisfy down-safety; otherwise, it returns false. The∏

p∈pred(n) XAvail(enp , p) of this equation applies the meet oper-
ator u described in Section 2.3 to all answers. This operation is
performed when the combinations of answers returned from pre-
decessors do not meet the Insert condition.

To keep the semantics of the program, LDPRE analyzes down-
safety at the insertion point. The down-safety is checked by
propagating the query from the exit of the node that is the can-
didate for insertion of the expression to end. Similar to the avail-
ability analysis, this query examines if there are occurrences of
the same expression. In addition, this query propagation ana-
lyzes two types of down-safety for e: down-safety at the entry
of node n (NDSafe(e, n)) and down-safety at the exit of node n
(XDSafe(e, n)).

NDSafe(e, n) becomes true if there are no assignment state-
ments for the operand of e between the occurrence of e in n and
the entry of the node. Even if there is no occurrence of e in n, the
predicate also becomes true when XDSafe(e, n) is true and there
are no assignment statements for the operand of e.

LDPRE defines NDSafe as follows:

© 2023 Information Processing Society of Japan 6

Journal of Information Processing Vol.31 1–12 (Aug. 2023)

x� = a� + b�

y� = a� + b�

z� = x� + 1

w� = y� + 1

(a)

x� = a� + b�

y� = x�

z� = x� + 1

w� = y� + 1

(b)

x� = a� + b�

y� = x�

z� = x� + 1

w� = x� + 1

(c)

Fig. 16 Capturing second-order effects. (a) An Original code (b) Eliminat-
ing redundancy (c) Applying copy propagation to (b)

NDSafe(e, n)
def
⇔



true if visit[(e, n)] = true
false else if visit[(e, n)] = false
true else if comp(e, n)
false else if kill(e, n)
XDSafe(e, n) otherwise

XDSafe(e, n) becomes true if all entries of the successors of n are
down-safe. However, if n is an end node, it is not possible to
propagate the query to successors anymore; thus, it returns false.

We define the data-flow equation for XDSafe as follows:

XDSafe(e, n)
def
⇔


false if n = end∏
s∈succ(n)

NDSafe(esn , s) otherwise

esn

def
⇔ FUpdate(e, s, n)

The function FUpdate is a function that updates operands
to propagate the query in the opposite direction of BUpdate;
FUpdate(e, s, n) replaces the operand of e with the variable de-
fined by the φ function of the node s if the operand is used as the
argument of the φ function corresponding to node n.

If both true and false are obtained in node n, and the predeces-
sors that returns false or> are down-safe, then LDPRE inserts the
expression into the predecessors.

The data-flow equation for Insert is defined as follows:

Aep

def
⇔ XAvail(e, p)

Insert(e, n)
def
⇔


false if | {Aep = true | p ∈ pred(n)} | = 0
true else if | {Aep = false | p ∈ pred(n)} | > 0
false otherwise

In the equation, | • | is the size of set •.

4.2 Application to the Entire Program
It is well-known that applying PRE and copy propagation has

the effect of exposing new redundancies, known as second-order
effects [16]. Fig. 16 shows an example of capturing second-
order effects. If LDPRE traverses the program in (a), it first finds
that the right-hand side of y1=a1+b1 is redundant. After elimi-
nating this redundancy by replacing it with x1, LDPRE applies
copy propagation to replace y1 with x1 in the following expres-
sions. This application updates the expression y1+1 to x1+1; LD-
PRE eliminates this redundancy later. As shown in this example,
there is redundancy that becomes parsable by changing the lexical
representation of the equation, called second-order effects. Once
PREQP revokes eliminating redundancies as described in Section
3.3, the number of redundancies that could have been eliminated
by reflecting the second-order effects is also reduced.

To capture the second-order effects, LDPRE visits each CFG

Algorithm 1 Pseudo codes of XAvail and NAvail
1: Function XAvail(e, n)
2: if visit[(e, n)] = ⊥

3: return >
4: if visit[(e, n)] = true | | visit[(e, n)] = false
5: return visit[(e, n)]
6: if comp(e, n)
7: visit[(e, n)]← true
8: return visit[(e, n)]
9: if kill(e, n)

10: visit[(e, n)]← false
11: return visit[(e, n)]
12: visit[(e, n)]← ⊥
13: visit[(e, n)]← NAvail(e, n)
14: return visit[(e, n)]
15: Function NAvail(e, n)
16: if n is start
17: visit[(e, n)]← false
18: return visit[(e, n)]
19: alist ← [] // This is used for recording answers
20: for p in pred(n)
21: enp ← BUpdate(e, n, p)
22: alist.append(XAvail(enp , p))
23: if InsertCond(alist) // Checking down-safety in this function
24: new statements and a phi function are inserted
25: visit[(e, n)]← true
26: return visit[(e, n)]
27: return SQCAP(alist)

node in topological sort order, and performs copy propagation af-
ter eliminating redundancy as well as previous DDPREs.

4.3 Algorithm Overview
As the data-flow equations describe how to determine the an-

swers, we present implementations of our XAvail and NAvail in
Algorithm 1.

Looking at the function XAvail, it first checks whether the same
query has already been propagated to node n (lines 2∼5) to obtain
an answer without checking the statements of n in detail. If this
is the first time visit for e, LDPRE checks whether there is the
same expression or kill statement occurrence in n. If it finds the
occurrence, LDPRE stores the answer as true or false according
to comp and kill functions, respectively, and then it returns the an-
swer (lines 6∼11). Otherwise, LDPRE stores ⊥ in visit[(e, n)] to
indicate that this node has already been visited by e (line 12) and
calls NAvail to propagate queries to the predecessors of n (lines
13∼14).

As the function NAvail(e, n) obtains answers from predeces-
sors, it first checks whether n is the start (lines 16∼18). If n is
not the start, it calls XAvail for each predecessor (lines 19∼22).
After collecting the answers, this function determines the answer
at this node. If any expression or a φ function is inserted at the
predecessors or this node, the answer is true (lines 23∼26). Oth-
erwise, the answer is determined by function SQCAP correspond-
ing to

∏
p∈pred(n) XAvail(enp , p) defined in the data-flow equation

of NAvail (line 27).

© 2023 Information Processing Society of Japan 7

Journal of Information Processing Vol.31 1–12 (Aug. 2023)

5. Experimental Evaluation
5.1 Settings

We implemented our algorithm*1 as a low-level intermediate
representation (LIR) converter using a COINS compiler*2. We
conducted all experiments on a machine equipped with a Intel
Corei7-8700K 3.70GHz CPU and an Ubuntu 64 bit operating sys-
tem. We evaluated the effectiveness of our algorithm using seven
programs (gzip, vpr, mcf, parser, gap, bzip2, and twolf) from
CINT2000 and three programs (art, equake, and ammp) from
CFP2000 in the SPEC CPU2000 benchmark. SPEC CPU2000
benchmark includes programs written in C++ and Fortran, which
are not supported by the COINS compiler. The objective codes of
the above 10 programs all behaved correctly in the environment
mentioned above when COINS was used with no options and all
PRE options that were used in this evaluation described below.

As the purpose of the experiment was to compare the perfor-
mance of PRE’s algorithms, we implemented the following five
algorithms.
• PRE applies LCM that uses bit vectors to analyze the whole

program, converting to the SSA form from the normal form,
and converting to the normal form from the SSA form. This
LCM uses a data-flow analysis that improves the efficiency
of initialization, which is a costly process in data flow anal-
ysis [14].

• PRE*2 applies LCM, copy propagation, LCM, converting
to the SSA form from the normal form, and converting to
the normal form from the SSA form.

• PRE*3 applies LCM, copy propagation, LCM, copy prop-
agation, LCM, converting SSA form from the normal form,
and converting to the normal form from the SSA form.

• PREQP performs conversion to the SSA form from the nor-
mal form, PREQP, and converting to the normal form from
the SSA form. Note that the original algorithm performs
speculative code motion only for loop invariant codes to
move them out of their loops; however, this study prohibits
the speculative code motion by adding down-safety check
for all insertions for fair comparison.

• LDPRE converts from the normal form to SSA form, LD-
PRE, and converts from the SSA form back to the normal
form.

For fair comparisons, we applied the SSA/normal form conver-
sion to the three exhaustive PREs to capture effects of coalescing
in translating φ functions [17]. Note that these five algorithms
commonly apply making three-address code for each statement
and eliminating critical edges before they perform. As this paper
compares the analysis time and the number of redundant expres-
sions eliminated by each of the above PREs, we did not perform
any optimizations for LIR not described above. To perform the
above optimizations, COINS provides the following options.
• divex makes each statement three-address code

*1 All codes and configuration files used in this evaluation are available at
https://github.com/sumilab/programs/tree/master/ldpre

*2 The document is available at: http://coins-compiler.osdn.jp/
050303/index.html. The source codes are opened at https://
sourceforge.net/projects/coins-project/

Table 1 Number of eliminated expressions. Bold letters indicate the best
results.

Program PRE PRE*2 PRE*3 A. PREQP B. LDPRE (B-A)/A

gzip 455 544 584 804 984 22.4%

gap 12,200 17,456 20,004 26,594 28,901 8.7%

bzip2 277 376 419 669 807 20.6%

vpr 1,452 1,873 2,056 2,974 3,535 18.9%

mcf 118 160 161 232 282 21.6%

parser 718 1,079 1,196 1,838 2,136 16.2%

twolf 4,210 5,618 6,306 9,138 9,964 9.0%

art 121 141 147 295 359 21.7%

ammp 870 1,335 1,544 3,927 4,247 8.1%

equake 186 239 251 847 993 17.2%

• esplt eliminates critical edges
• pre performs LCM
• cpyp performs copy propagation
• prun converts to the SSA form from the normal form
• srd3 converts to the normal form from the SSA form
• preqp performs PREQP

Thus, to perform the above five algorithms, we set the following
option combinations.
• PRE: divex, esplt, pre, prun, srd3
• PRE*2: divex, esplt, pre, cpyp, pre, prun, srd3
• PRE*3: divex, esplt, pre, cpyp, pre, cpyp, pre, prun,
srd3

• PREQP: divex, esplt, prun, preqp, srd3
• LDPRE: divex, esplt, prun, ldpre, srd3

Note that we require only the two options of making each state-
ment three-address code and eliminating critical edges before the
application of LDPRE. However, it is possible to run other opti-
mizations before or after LDPRE. In fact, COINS applies branch
optimization, instruction selection, and register allocation after
PRE in this evaluation [15].

5.2 Results
In the remainder of this section, we first show the number of

redundant expressions eliminated by the five algorithms. We then
present the analysis time for each PRE algorithm. Next, focusing
on DDPRE, we analyze the number of nodes queries of PREQP
and LDPRE actually visited.

Q. How many redundant expressions could LDPRE
eliminate?
A. It eliminated the most redundancy in all programs
among the five algorithms.

Tab. 1 shows the numbers of eliminated expressions. It can
be seen that LDPRE eliminated the most redundant expressions
in all programs. Compared to PREQP, which may cancel re-
dundancy elimination, LDPRE eliminated redundancy in approx-
imately 10∼20% more expressions. The cancellation of PREQP
may reduce the number of reflecting second-order effects; thus,
LDPRE eliminated more redundancy than PREQP. Note that
PRE, PRE*2, and PRE*3 denote the number of expressions to be
replaced by the predicate Replace that represents the replacement
of expressions in LCM. As the number of replaced expressions
increased when applying LCM and copy propagation for all pro-
grams, this result indicated that the capturing second-order effects

© 2023 Information Processing Society of Japan 8

Journal of Information Processing Vol.31 1–12 (Aug. 2023)

Table 2 Results of analysis time. The unit is seconds.

Program PRE PRE*2 PRE*3 A. PREQP B. LDPRE (A-B)/A

gzip 804.3 1,436.7 1904.9 406.2 406.0 0.0%

gap 17,545.4 35,340.4 50,073.0 4,779.1 4,788.3 -0.2%

bzip2 541.2 1,065.9 1,541.5 161.9 162.1 -0.1%

vpr 1,473.0 2,838.3 3,749.6 798.7 809.4 -1.3%

mcf 332.7 486.0 600.7 185.5 179.4 3.3%

parser 1,157.5 2,113.5 2,791.2 644.6 656.2 -1.8%

twolf 17,982.5 36,462.2 50,790.9 3,325.7 3,307 0.6%

art 145.3 290.2 397.6 55.6 55.1 0.9%

ammp 3,912.8 7,778.4 10,508.0 1,308.8 1,315.8 -0.5%

equake 741.9 1,536.6 2,176.2 167.2 163.2 2.4%

increases the eliminable redundancy.

Q. Which algorithm achieved the shortest analysis time?
A. Each LDPRE and PREQP obtained the shortest anal-
ysis time for half of the programs.
A. Comparing LDPRE and PREQP, seven programs
only had 1% change in analysis time. The remaining
three programs also showed a maximum change of only
approximately 3%.

Tab. 2 shows that analysis times of all algorithms. Each num-
ber in this table is the average of 10 runs of each program.

Exhaustive PREs vs. LDPRE: First, we compare the exhaus-
tive PREs and LDPRE to see if LDPRE keeps a short analysis
time that is a feature of demand-driven analysis achieved by limit-
ing the analyzing range. We can see that LDPRE obtained shorter
analysis times for all programs; thus, we can say that LDPRE re-
tains the benefit of demand-driven analysis. Note here that both
PREQP and LDPRE had shorter analysis times than the three
PREs that use bit vectors.

PREQP vs. LDPRE: We next compare the analysis times of
PREQP and LDPRE. The 7th column in this table shows the per-
centage of analysis time for LDPRE compared to PREQP. These
results show that seven programs had only 1% change in analy-
sis time while the remaining three programs showed a maximum
change of only approximately 3%. As shown in Tab. 1, LD-
PRE increased the number of eliminated expressions compared
to PREQP; it is natural that the number of queries propagated
by LDPRE would also be increased. In fact, for the five pro-
grams, the analysis times of LDPRE were longer than that for
PREQP though the increasing ratios were approximately 1∼2%.
By contrast, LDPRE took less time to analyze in the remaining
five programs, specifically taking approximately 3.3% less time
for mcf. By delaying answer determination when a query for
the same equation revisits the same node, LDPRE eliminates the
need to check whether the answer is consistent, which was nec-
essary in PREQP, and thus the analysis time was reduced by that
amount.

Q. Did the number of nodes visited by queries propa-
gated by LDPRE change compared to those of PREQP?
A. The total number of visited nodes increased for all
programs.
A. The average number of nodes visited by one query
also increased in LDPRE for many programs.

Table 3 Number of nodes query visited and average.

Program A.PREQP B.LDPRE (A-B)/A C.PREQP D.LDPRE (C-D)/C

gzip 39,900 41,424 -3.8% 21.8 21.7 0.5%

gap 1,291,858 1,529,511 -18.4% 29.1 33.5 -15.1%

bzip2 35,439 41,116 -16.0% 25.8 28.8 -11.6%

vpr 91,350 103,658 -13.5% 17.8 19.5 -9.6%

mcf 9,271 10,140 -9.4% 16.3 16.8 -3.1%

parser 82,084 93,253 -13.6% 19.2 21.1 -9.9%

twolf 533,079 58,0955 -9.0% 42.1 45.1 -7.1%

art 8,952 9,098 -1.6% 17.9 18.0 -0.6%

ammp 138,426 143,628 -3.8% 21.5 22.0 -2.3%

equake 23,109 26,974 -16.7% 37.0 41.0 -10.8%

Next, we see how the increase of redundancy that LDPRE was
able to eliminate affected the number of nodes visited by each
query. Tab. 3 shows the numbers of nodes queries of PREQP
and LDPRE visited and their averages per a query. First, the to-
tal numbers of nodes visited by the query are shown in 2∼3th
columns. The overall trend was that query propagation by LD-
PRE visited more nodes than the ones by PREQP. In fact, as
shown in the 4th column, the number of query visiting was ap-
proximately 10∼20% higher for the seven programs. This in-
crease may be due to the greater number of redundant expressions
that LDPRE was able to eliminate.

Next, columns 5∼6 shows the average number of nodes visited
by a single query. The 7th column shows the percentage decrease
in the mean. In nine programs, the average numbers of nodes
visited by queries of LDPRE were higher than that of PREQP.
Focusing on the gzip result, the average number of nodes vis-
ited per query decreased, even though the total number of visited
nodes increased. This result simply indicates that the fact that the
generated queries were increased by capturing the second-order
effects although these queries obtained answers near the gener-
ated program points.

6. Conclusions
In this paper, we have proposed a novel demand-driven par-

tial redundancy elimination (DDPRE) called lazy demand-driven
PRE (LDPRE). LDPRE does not analyze the entire program to
eliminate redundancy; it analyzes only parts of it by propagating
query that checks for occurrences of the same expression. The
query returns true if the same expression appears; otherwise, it
returns false. Although PREQP has been proposed as a DDPRE,
PREQP optimistically returns true when a query about e revis-
its the same node twice. However, this optimistic return of the
answer may cause the expression not to be inserted even though
it should have been. LDPRE returns >, an element of the semi-
lattice representing the inclusion of all answers, so that when a
query on e revisits the same node, it can later determine the an-
swer instead of true. The use of > makes it possible to delay
the determination of the answer, allowing it to be true only when
there is an actual occurrence of the expression, rather than op-
timistically determining it to be true. This extension allows the
elimination of redundancies that could not be done by PREQP.

To evaluate the effectiveness of LDPRE, we used PRE ana-
lyzing the entire programs and PREQP as baselines. Using the
SPEC CPU2000 benchmark to measure the number of eliminated
expressions and analysis time, we found that LDPRE eliminated

© 2023 Information Processing Society of Japan 9

Journal of Information Processing Vol.31 1–12 (Aug. 2023)

more redundancy than the previous PRE and DDPRE in a short
analysis time, which is a characteristic of demand-driven analy-
sis. PREQP requires analysis to determine whether the insertion
of equations can be done without problems by determining op-
timistic answers; however, LDPRE does not require this. This
benefits further reduces the analysis time for many programs.

Future Works. Redundancy elimination involves two phases:
analyzing redundancies and eliminating them. This paper focused
on the former phase with the assumption that all analyzed redun-
dancies are eliminated. Thus, we will improve the latter phase
in the next study. Indeed, it is well known that eliminating re-
dundancies does not always lead to shorten the execution times
because the elimination tends to increase the number of register
spill that would worsen execution efficiency of the objective code
[10], [11]. Therefore, we can consider an extension of LDPRE to
analyze execution frequency used in the optimization algorithms
of JIT compilers. In recent years, JIT compilers have been widely
used in situations where both shorter analysis time and execu-
tion time are required such as for Web browsers. In such usage,
the shorter the analysis time involved in optimization, the better;
thus, demand-driven analysis is desirable for using a powerful
optimization such as PRE. In general, a JIT compiler provides
frequency information for optimizations to perform them focus-
ing on hot code paths. If we perform query propagation only
for frequently executed nodes, we can suppress the number of
redundancies to be eliminated by giving up analyzing less effec-
tive areas while maintaining analyzing areas where optimization
is more effective. In addition, a method can be considered to
reduce the execution time of the objective code by eliminating
redundancy while suppressing register spills. For example, it is
interesting to use a register allocator generating more spills in
cold paths to improve the execution time.

References
[1] Alpern, B., Wegman, M. N. and Zadeck, F. K.: Detecting equality of

variables in programs, POPL ’88, New York, NY, USA, ACM, pp.
1–11 (1988).

[2] Appel, A. W.: Modern Compiler Implementation in ML: Basic Tech-
niques, Cambridge University Press, New York, NY, USA (1997).

[3] Bodik, R., Gupta, R. and Soffa, M. L.: Complete removal of redundant
expressions, PLDI ’98, New York, NY, USA, ACM, pp. 1–14 (1998).

[4] Cai, Q. and Xue, J.: Optimal and efficient speculation-based partial re-
dundancy elimination, Proceedings of the international symposium on
Code generation and optimization: feedback-directed and runtime op-
timization, CGO ’03, Washington, DC, USA, IEEE Computer Society,
pp. 91–102 (2003).

[5] Chow, F., Chan, S., Kennedy, R., Liu, S.-M., Lo, R. and Tu, P.: A New
Algorithm for Partial Redundancy Elimination Based on SSA Form,
Proceedings of the ACM SIGPLAN 1997 Conference on Programming
Language Design and Implementation, PLDI ’97, New York, NY,
USA, Association for Computing Machinery, pp. 273–286 (1997).

[6] Cocke, J.: Global Common Subexpression Elimination, Proceedings
of a Symposium on Compiler Optimization, New York, NY, USA,
ACM, pp. 20–24 (online), DOI: 10.1145/800028.808480 (1970).

[7] Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N. and Zadeck,
F. K.: Efficiently Computing Static Single Assignment Form and the
Control Dependence Graph, Technical report, Providence, RI, USA
(1991).

[8] Gupta, R. and Bodı́k, R.: Register Pressure Sensitive Redundancy
Elimination, Proceedings of the 8th International Conference on Com-
piler Construction, Held as Part of the European Joint Conferences on
the Theory and Practice of Software, ETAPS’99, CC ’99, Berlin, Hei-
delberg, Springer-Verlag, pp. 107–121 (1999).

[9] Horspool, R. N., Pereira, D. J. and Scholz, B.: Fast Profile-Based
Partial Redundancy Elimination, Modular Programming Languages

(Lightfoot, D. E. and Szyperski, C., eds.), Berlin, Heidelberg, Springer
Berlin Heidelberg, pp. 362–376 (2006).

[10] Knoop, J., Ruthing, O. and Steffen, B.: Lazy code motion, Proceed-
ings of the ACM SIGPLAN 1992 conference on Programming lan-
guage design and implementation, PLDI ’92, New York, NY, USA,
ACM, pp. 224–234 (online), DOI: 10.1145/143095.143136 (1992).

[11] Knoop, J., Ruthing, O. and Steffen, B.: Optimal code motion: theory
and practice, ACM Trans. Program. Lang. Syst., Vol. 16, No. 4, pp.
1117–1155 (online), DOI: 10.1145/183432.183443 (1994).

[12] Krause, P. K.: Lospre in Linear Time, Proceedings of the 24th Inter-
national Workshop on Software and Compilers for Embedded Systems,
SCOPES ’21, New York, NY, USA, Association for Computing Ma-
chinery, pp. 35–41 (online), DOI: 10.1145/3493229.3493304 (2021).

[13] Morel, E. and Renvoise, C.: Global optimization by suppression of
partial redundancies, Commun. ACM, Vol. 22, No. 2, pp. 96–103
(1979).

[14] Morgan, B.: Building an Optimizing Compiler, Digital Press (1998).
[15] Mori, K., Abe, S. and Nakata, I.: A Guide for Compiler Developers

Using the Latest Tool - The COINS Compiler Infrastructure - : LIR
(Low-level Intermediate Representation) and the Outline of the Back-
end, IPSJ magazine, Vol. 47, No. 6, pp. 662–669 (2006). (in Japanese).

[16] Rosen, B. K., Wegman, M. N. and Zadeck, F. K.: Global value
numbers and redundant computations, Proceedings of the 15th ACM
SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, POPL ’88, New York, NY, USA, ACM, pp. 12–27 (1988).

[17] Sreedhar, V. C., Ju, R. D.-C., Gillies, D. M. and Santhanam, V.: Trans-
lating Out of Static Single Assignment Form, Static Analysis (Cortesi,
A. and Filé, G., eds.), Berlin, Heidelberg, Springer Berlin Heidelberg,
pp. 194–210 (1999).

[18] Steffen, B., Knoop, J. and Rüthing, O.: Efficient Code Motion and
an Adaption to Strength Reduction, Proceedings of the International
Joint Conference on Theory and Practice of Software Development on
Advances in Distributed Computing (ADC) and Colloquium on Com-
bining Paradigms for Software Development (CCPSD): Vol. 2, TAP-
SOFT ’91, Berlin, Heidelberg, Springer-Verlag, pp. 394–415 (1991).

[19] Sumikawa, Y. and Takimoto, M.: Effective Demand-driven Partial
Redundancy Elimination, Information Processing Society of Japan
Transactions on Programming, Vol. 6, No. 2, pp. 33–44 (2013).

[20] Takimoto, M.: Speculative Partial Redundancy Elimination Based
on Question Propagation, Information Processing Society of Japan
Transactions on Programming, Vol. 2, No. 5, pp. 15–27 (2009).

[21] Wimmer, C. and Mössenböck, H.: Optimized Interval Splitting in a
Linear Scan Register Allocator, Proceedings of the 1st ACM/USENIX
International Conference on Virtual Execution Environments, VEE
’05, New York, NY, USA, Association for Computing Machinery, pp.
132–141 (online), DOI: 10.1145/1064979.1064998 (2005).

[22] Xue, J. and Cai, Q.: A Lifetime Optimal Algorithm for Speculative
PRE, ACM Trans. Archit. Code Optim., Vol. 3, No. 2, pp. 115–155
(2006).

Yuya Yanase received his B.E. degree in
Computer Sciences from Takushoku Uni-
versity in 2022. His research interests in-
cludes compiler and its implementation.

Yasunobu Sumikawa received his B.S.
degree in Mathematics from Tokyo Uni-
versity of Science in 2010, and his M.S.
and Ph.D. degrees in Information Science
from Tokyo University of Science in 2012
and 2015, respectively. He is currently
an Assistant Professor at the department
of computer science, Takushoku Univer-

sity, Japan. His research interests lie on compiler, information
retrieval, computational history, and history learning.

© 2023 Information Processing Society of Japan 10

Journal of Information Processing Vol.31 1–12 (Aug. 2023)

Appendix
We analyze the execution time of the objective code generated

by applying each PRE.

Q. How different the execution time of the objective
code generated by the application of LDPRE compared
to other algorithms?
A. The overall trend was similar execution times of LD-
PRE to the ones of comparators; however, LDPRE ob-
tained the best results for the four programs.
A. LDPRE got better execution times for six programs
compared to three PREs analyzing the entire program.
A. Compared to PREQP, LDPRE’s execution time dif-
fered by approximately 2∼3% for the nine programs;
however, LDPRE’s execution time was 25.5% longer for
equake.

Tab. A·1 shows the execution times of the objective code gen-
erated by applying each algorithm. The numbers in this table are
the average of 10 runs of each program. Overall, the LDPRE
results were similar in execution time to the comparators; how-
ever, LDPRE achieved the best results for the four programs: gap,
twolf, art, and ammp. Comparing the results of PRE, which ap-
ply LCM only once, and LDPRE, LDPRE obtained slower times
for the vpr, parser, and equake; however, the difference was only
approximately 0.8∼1.5%. An overall comparison of the three
PREs analyzing the entire program and LDPRE shows that the
LDPRE had comparable or better execution times for six pro-
grams. The three PREs show that the capturing second-order
effects affects execution time, because repeated LCM and copy
propagation tends to reduce execution time for many programs.
As DDPRE applies copy propagation for each elimination, all
programs with the shortest execution time for the objective code
were obtained by DDPRE. Furthermore, DDPRE achieved better
results on not only the execution time of the objective code, but
also the analysis time, as we have already seen the results in Tab.
2.

Next, we compare the results of PREQP and LDPRE. LD-
PRE achieved better execution times for four programs whereas
it worse the times for six ones. However, the difference in the
nine programs, excluding earthquake, was approximately 2∼3%.
In equake, LDPRE got 25.5% longer execution time than the one
of PREQP. To better understand why LDPRE worsened the exe-

Table A·1 Results of execution time of objective code. Bold letters indicate
the number with the shortest execution time. The unit is seconds.

Program PRE PRE*2 PRE*3 A. PREQP B. LDPRE (A-B)/A

gzip 80.8 76.5 79.6 74.6 74.8 -0.2%

gap 61.2 60.6 59.6 59.8 58.8 1.6%

bzip2 59.5 57.6 57.7 56.3 57.0 -1.2%

vpr 52.6 55.4 53.1 51.8 53.3 -2.8%

mcf 24.3 24.0 23.8 23.8 24.0 -0.8%

parser 116 116 117 114 117 -2.6%

twolf 85.2 87.1 85.5 84.9 83.5 1.6%

art 20.3 20.1 20.1 20.3 20.1 0.9%

ammp 83.4 82.7 84.6 83.7 82.3 1.4%

equake 40.6 35.3 33.8 32.9 41.3 -25.5%

Table A·2 Number of register spills.

Program PRE PRE*2 PRE*3 A. PREQP B. LDPRE (A-B)/A

gzip 146 150 146 108 138 -27.7%

gap 2,898 3,118 3,026 1,973 2,671 -35.3%

bzip2 132 129 140 97 132 -36.0%

vpr 751 763 744 663 744 -12.2%

mcf 91 96 93 73 88 -20.5%

parser 280 288 285 284 376 -32.3%

twolf 1,132 1,170 1,179 784 986 -25.7%

art 35 35 34 28 33 -17.8%

ammp 570 455 472 400 535 -33.7%

equake 83 87 100 50 77 -54.0%

cution time for equake, we counted the number of expressions
eliminated by the algorithms. Tab. 1 shows this result. We
can see that LDPRE eliminated more redundant expressions than
PREQP. Focusing on equake, LDPRE eliminated 1.2 times more
redundancies than PREQP. In general, register pressure tends to
be higher when copy propagation is applied after redundant state-
ments have been eliminated [8]. We then counted the number
of register spills the algorithms generated and listed them in Tab.
A·2. Tab. A·2 shows that LDPRE generates approximately 54%
more register spills than PREQP for equake. We can conclude
that LDPRE eliminated more redundancy than PREQP but also
generated more register spills as an effect of the elimination, re-
sulting in longer execution times. Register spills are less likely to
occur on machines with a large number of registers; thus, LDPRE
may have a shorter execution time than PREQP on other CPUs,
even equake.

Q. How much register spill LDPRE generated?
A. The number of times LDPRE occur tends to be less
than those of PREs that analyze the entire program
A. LDPRE generated the spills 10∼50% more than
PREQP in all programs

In order to provide a deeper analysis on the execution time
of the objective code, we present here the results of measuring
the number of spills actually generated by the register alloca-
tion equipped with COINS. The register allocation determines
spills by static analysis because the algorithm is based on Appel-
George’s Iterated Register Coalescing, an improved version of the
Graph Coloring algorithm. Therefore, the numbers shown here
have less correlation with execution time of the target code. How-
ever, as LDPRE is designed as a optimization technique applied
before register allocation, a discussion on the number of static
spills caused by LDPRE is useful when selecting register alloca-
tion algorithms. First, we compare the three PREs that analyze
the entire program and DDPREs. The result shows that DDPREs
generate fewer spills in many programs. While PRE, which an-
alyzes the entire program, targets normal-format programs, both
PREQP and LDPRE target SSA-format programs. In the elimi-
nation of redundancy on the SSA format, the algorithms insert φ
functions. All programs represented by SSA format need to be re-
verted to normal format. During that conversion, each φ function
is converted to a copy statement by its destination and argument
variables. Thus, a possible reason for the lower number of spills
for DDPRE is that this copy statement divides the live-range of

© 2023 Information Processing Society of Japan 11

Journal of Information Processing Vol.31 1–12 (Aug. 2023)

the variable and reduces register pressure. In fact, a technique
has been proposed to improve the performance of register alloca-
tion by partitioning the live-range of a variable [21]. Comparing
PREQP and LDPRE, the spills that occurred in all programs were
higher in LDPRE. In particular, LDPRE increased them approx-
imately 54% for equake. This reason is due to the large number
of redundancies that could be eliminated.

© 2023 Information Processing Society of Japan 12

