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ABSTRACT
Analyzing history has numerous benefits, including understanding
what the people in the past did for events and what results they
obtained and using historical knowledge to the present. Several past
studies have analyzed historical events based on the assumption
that each event is described in texts. Most of them analyze how
similar the words and their categories used in the descriptions are
instead of taking care of event-causal relationships.

In this study, we propose an algorithm named the Event Causality
relationship similarity Measurement (ECM) to measure the similar-
ity between event-causal relationships. The ECM solves a maximum
weight matching problem on a bipartite graph, where the weights
are the similarities between the event-causal relationships. We eval-
uated ECM with previous related works and confirmed that the
ECM is the best.
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1 INTRODUCTION
The importance of having a good knowledge of history and the
ability to apply that knowledge in the present society has been
gaining attention in recent years [1][4]. In fact, the importance
of history is widely recognized, as many countries have classes
for learning history from elementary school, and history curricula
and learning support research emphasize the development of the
ability to use knowledge in the present society rather than merely
memorizing history [9]. As the saying goes, “History does not
repeat itself, but rhythms repeat themselves,” events occurring in
the past and present often contain similarities as well as differences.
In other words, to utilize knowledge from the past in the present, it
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is important to identify the similarity of not only the words used
in the event descriptions, but also relationships such as cause-and-
effect relationships [7].

Although there have been studies on retrieving events, most of
them analyze how similar the words [9] and their categories [19]
are used in the descriptions instead of taking care of event-causal
relationships. By contrast, several studies on history teaching and
learning research fields have proposed methods that guide learners
tomeasure the similarity between causal relationships [8]. However,
the methods use fixed causal relationships defined by researchers;
thus, it is difficult to use other relationships.

In this study, we propose an algorithm, named Event Causality
relationship similarity Measurement (ECM), to measure the similar-
ity of event-causal relationships. This study uses two assumptions:
1) each event-causal relationship includes at least two events and
2) the events are arranged in chronological order regarding when
they occur. The proposed algorithm creates a bipartite graph, whose
nodes and weighted edges represent events and their similarities.
It then measures the similarity between the two event-causal re-
lationships by solving a maximum weight matching problem on
the graph. We propose a novel matching problem that adds con-
straint no intersection points on the edges that are the solutions to the
problem to the general maximum weight matching problem. This
constraint allows us to evaluate the similarity between event-causal
relationships.

Fig. 1 shows a motivation example. In this figure, there are three
event-causal relationships, and there exists an event ”Evacuation“
at their end. Looking at the cause of the events, (a) and (b) are
both ”Landslides“, but (c) is a ”Typhoon.“ Because we search for
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Evacuation
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Evacuation
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Figure 1: Example of causality relationship similarity mea-
surement

https://doi.org/10.1145/3486622.3493936
https://doi.org/10.1145/3486622.3493936


WI-IAT ’21, December 14–17, 2021, ESSENDON, VIC, Australia Y. Sumikawa

similar causality relationships in this study, we consider that the two
causality relationships represented by Landslide and Evacuation are
more similar to each other than the causal relationships represented
by Typhoon and Evacuation. Therefore, if the causal relationship
of (a) is input, our algorithm outputs (b) as a result.

We evaluated ECM using aWikipedia-based dataset namedW2E,
which included 322 topics and 1,041 events. We confirmed that ECM
is the best algorithm in terms of MAP, precision, recall, and 𝐹1-score
compared with baselines.

The remainder of this paper is organized as follows. We present
the definitions in Section 2 and the related work in Section 3. In Sec-
tion 4, we describe the proposed algorithm. Section 5 presents the
results of the experimental evaluation. The last section concludes
the paper and describes future work.

2 DEFINITIONS
2.1 Event and Causal relationship
We define an event as a text of a single event. This means that events
that include multiple events, such as World War I and World War
II, are excluded. We also define a causal relationship as a collection
of two or more events. Within this collection, we assume that the
entire sequence can be defined in terms of the time series when
events occur. For example, if we consider this definition usingWorld
War II, World War II can be regarded as a representation of a causal
relationship and the events include the attack on Pearl Harbor and
the Potsdam Declaration.

2.2 Bipartite Graph
Let 𝐺 = (𝐴, 𝐵, 𝐸) be the bipartite graph where 𝐴 and 𝐵 are two
node sets and 𝐸 is an edge set. Each node of 𝐴 and 𝐵 represents an
event. Weight of an edge (𝑎𝑖 , 𝑏𝑖 ) where 𝑎𝑖 ∈ 𝐴,𝑏𝑖 ∈ 𝐵 represents
the similarity between events of the nodes 𝑎𝑖 and 𝑏𝑖 .

2.3 Ordered Bipartite Graph
An ordered bipartite graph 𝐺 ′ defines the total order in two node
sets 𝐴 and 𝐵. That is, it defines the total order for all the subscripts
𝑖, 𝑗 of 𝑎𝑖 , 𝑎 𝑗 ∈ 𝐴.

2.4 MaximumWeight Matching
For a given graph 𝐺 , matching is an edge set 𝑀 ⊂ 𝐸 that does
not share any nodes. Maximum weight matching is the problem of
finding the highest sum of weights 𝑀 ′ ∈ 𝑀 of the edges selected
as𝑀 .

3 RELATEDWORK
3.1 Event Classification and Detection
One of the most studied research in analyzing event texts is classi-
fication. Kosmerlj et al. proposed event categories that were origi-
nally defined byWikipedia editors, and then investigated automatic
classification using Term frequency-inverse document frequency
(TF-IDF) model created from news articles [10]. This study uses
whole news article texts; however, several events are referred to in
texts with several words. Sumikawa and Jatowt proposed a feature
selection method for classifing short documents of past events [18].

Sumikawa and Ikejiri extended this study from single-label clas-
sification to multi-label classification [17]. These studies propose
classification frameworks rather than search algorithms.

Several studies have proposed event detection methods based
on texts. The method proposed by Manaskasemsak et al. detected
emerging events from Twitter [13]. This method first identifies
events by grouping similar tweets on a tweet graph whose nodes
and edges represent tweets and their similarities. If the events are
classified as trend lines, the method regards them as emerging
events. The purpose of this study was to identify events instead of
measuring the similarity between several events.

3.2 Causal Relationship Extraction
Causal relationships extraction is one of the most widely studied
research topics. The problems that have been addressed in previous
studies can be broadly divided into two categories: learning causal
effects and learning causal relations [5]. Focusing on research using
event texts, studies have been conducted to learn causal relation-
ships from past events to predict possible future events. Radinsky
and Davidovich proposed an algorithm to predict possible future
events after mining causal relationship [15]. This algorithm first
extracts causal relationships from the descriptions of past events.
It then calculates the probability that an event will occur in the
near future. As a causal relationship includes several events, causal
relationship extraction is a task of topic detection and tracking.
Looking at topic detection and tracking studies, there are methods
to detect hot events from online news streams and track hot events
[14], detect global hot events and local hot events using local com-
munity detection mechanisms [20], and reporting real-life events
to users in the human-readable form [12].

These studies as well as our study focus on the causal relation-
ship between events; however, our algorithm assumes that the
causal relationship between events is already given and uses causal
relationships to measure the similarity between events.

4 ECM ALGORITHM
In this section, we first describe the theory of ECM solving our
maximum weight matching problem. We then describe dynamic
programming that solves this problem.

4.1 Theory
In this study, we add a constraint with no intersection points on the
edges that are the solutions to the problem to the general maximum
weight matching problem. We assume that the graph is defined in a
flat space. Fig. 2 shows the solutions obtained by solving the general
maximum weight matching problem and the extended problem of
this study. In the figure, the blue and red edges indicate the solutions
of the general and extended maximum weight matching problem,
respectively. Green edges represent the solutions shared by the two
problems. Looking at the 𝑎1, the node has two connected edges.
The weight of the edge that is also connected to 𝑏4 is higher than
that of the other edge; thus, the blue edge is chosen as the solution
in the general maximum weight matching. However, because it has
intersections with the edges (𝑎2, 𝑏2) and (𝑎3, 𝑏3), it is not chosen as
the solution in this study, and the other edge (𝑎1, 𝑏1) is chosen as
the solution.
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Figure 2: Example of solution difference between the gen-
eral maximum weight matching problem and proposed
problem in this study.

4.1.1 Ordered Bipartite Graph Construction. We assume that all
nodes 𝑁 are given before applying ECM. In addition, the given
nodes are already divided into sub-sets respecting causal relation-
ships and indexed respecting their chronological order about when
their corresponding events occurred. For example, if an event 𝑎1
causes another event 𝑎2, then two nodes 𝑎1 and 𝑎2 are defined and
grouped in the same node set 𝐴.

We construct the ordered bipartite graph 𝐺 = (𝐴, 𝐵) with the
given node sets. To define edges, the algorithm uses the similarity
between events corresponding to the nodes taken from each set of
𝐴 and 𝐵 as weights of their edges.

4.1.2 Solving Proposed Maximum Weight Matching Problem on
Ordered Bipartite Graph. The intuitive idea is that ECM measures
similarity in the order when events have occurred from the past
towards the present on the bipartite graph that represents the causal
relationships as defined in Section 4.1.1.

Let 𝑒 = (𝑎𝑖 , 𝑏 𝑗 ) and 𝑒 ′ = (𝑎𝑘 , 𝑏𝑙 ) be the edges that are included
in the solution (𝑒 ≠ 𝑒 ′). In this case, we define the constraint no
intersection points on the edges that are the solutions of the problem
as follows.
• If 𝑘 < 𝑖 , then 𝑙 < 𝑗 .
• If 𝑙 < 𝑗 , then 𝑘 < 𝑖 .

The ECM selects edges that are candidates for the solution one
by one in order from the one with the smallest index and calculates
the sum of the weights of all the edges selected as the solution. It
then chooses the edge set that maximizes the sum.

4.2 Implementation
In the remainder of this section, we describe the implementation
of ECM as a dynamic programming solver. First, we explain how
to fill a basic table in dynamic programming, and then present a
detailed algorithm.

Figs. 3 and 4 show a graph and a table of an example of how
to solve the constrained maximum weight matching problem on

a1 b1
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b|B|a|A|

b|B|-1

a2

ai

Figure 3: Example solutions of the proposed maximum
weight matching problem
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Figure 4: Dynamic programming solver

bipartite graphs by dynamic programming. The two figures color
the edges/cells green, red, and blue if they are already analyzed,
are currently being analyzed, and will be analyzed in the future,
respectively. As the implementation is dynamic programming, the
algorithm uses a table DP to record the sum of the weights of
the selected edges. In addition, ECM records all the weights of
the edges in a table𝑊 . ECM analyzes the nodes in 𝐴 and 𝐵 of a
bipartite graph 𝐺 = (𝐴, 𝐵) in ascending index order. If the edge
currently being analyzed is selected as the solution, the sum of the
weights is memorized in the table DP in addition to the set of edges
previously selected as the solution. In other words, as shown by
the arrows in Fig. 4, the weights of the selected edges from the
green area are transferred to the red cells, and the edge with the
highest value is finally selected as the solution. If the edge selected
as one of the solutions is (𝑎𝑖 , 𝑏𝑖 ), the algorithm then excludes all
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Figure 5: Solutions of Fig. 3 solved by dynamic programming

cells corresponding edges connected 𝑎𝑖 or 𝑏𝑖 other than the cell of
(𝑎𝑖 , 𝑏𝑖 ) from subsequent analysis such that they cannot be selected
as solutions. The ECM repeats this process until all the cells in the
table are filled with values.

Fig. 5 shows the two tables 𝑊 and DP , which record all the
weights of the edges and the sum of the weights of the selected
edges, respectively, that are created in this algorithm for Fig. 2. If
there is no edge on the ordered bipartite graph, 0 is recorded in
𝑊 . ECM records a value to the table DP by adding the highest of
the three values from the left, upper left, and upper right of the
table DP and the value of𝑊 corresponding to the current cell. This
process is performed until all the cells have recorded their values.
As a result, the sum of the weights of the edge set selected by this
method can be recorded in the lower right corner of the table DP ,
and the actual edge set is obtained by scanning its component edges
in the reverse direction.

In the following, we present the formal definitions of ECM. Let
𝑊 be a matrix whose elements are the weights of each edge of the
bipartite graph 𝐺 = (𝐴, 𝐵). That is, using the function weight that
returns theweight of the edge given as the argument, we define each
element of𝑊 as𝑊𝑖, 𝑗 = weight (𝑒 (𝑎𝑖 , 𝑏 𝑗 )) for any 𝑒𝑎𝑖 ∈ 𝐴, 𝑒𝑏 𝑗

∈ 𝐵.
We then consider the process of recording values to table DP .

Let𝑇𝑊𝑖 𝑗 be a total weight by adding the weight of 𝑒 (𝑎𝑖 , 𝑏 𝑗 ) and the
solution edges whose indexes are from (0, 0) to (𝑖 − 1, 𝑗 − 1). From
the definition of Section 4.1.2, 𝑇𝑊𝑖 𝑗 is larger than the total weights
of the other edges connected to 𝑎𝑖 or 𝑏 𝑗 selected as solutions. This is
because the indexes of the nodes connected to the edges previously
chosen as solutions are less than 𝑖 and 𝑗 , respectively. Thus, if the
edge 𝑒 (𝑎𝑖 , 𝑏 𝑗 ) is selected as the solution, the result of adding𝑊𝑖, 𝑗

to DP𝑖−1, 𝑗−1 should be larger than DP𝑖, 𝑗−1 or DP𝑖−1, 𝑗 ; otherwise,
the value is larger than the case where 𝑒 (𝑎𝑖 , 𝑏 𝑗 ) is not the solution.
The formal equation of this idea is as follows:

DP𝑖, 𝑗 = max (DP𝑖−1, 𝑗−1 +𝑊𝑖, 𝑗 ,DP𝑖−1, 𝑗 ,DP𝑖, 𝑗−1) +W𝑖, 𝑗 (1)

Algorithm 1 ECM implemented as dynamic programming
Input: A weighted matrix𝑊 , tables DP and rmax
Output: A set of edge SubE

1: Function ECM (𝑊,DP, rmax)
2: // Table calculation
3: for 𝑖 = 1 to ColumnSize(𝑊 )
4: for 𝑗 = 1 to RowSize(𝑊 )
5: prev_max ← Val(rmax𝑖−1, 𝑗−1)
6: DP𝑖, 𝑗 ← prev_max +𝑊𝑖, 𝑗

7: rmax𝑖, 𝑗 ← tuple_val_max (rmax𝑖−1, 𝑗 , rmax𝑖, 𝑗−1)
8: if DP𝑖, 𝑗 > val(rmax𝑖, 𝑗 )
9: rmax𝑖, 𝑗 ← (DP𝑖, 𝑗 , (𝑖, 𝑗))
10: end if
11: end for
12: end for
13: // Solution determination
14: 𝑖, 𝑗 ← ColumnSize(𝑊 ), RowSize(𝑊 )
15: SubE← ∅
16: while 𝑖 ≠ −1 and 𝑗 ≠ −1
17: SubE.append(𝑒𝑖, 𝑗 )
18: 𝑖, 𝑗 ← Index (rmax𝑖−1, 𝑗−1)
19: end while
20: return SubE

Algorithm1 shows the ECM algorithm1. ECM assumes that table
DP is initialized with all the components of the first row and first
column as 0. ECM also uses table rmax to record the edges as
solutions while filling in tableDP . rmax comprises a pair of a weight
value of the edge to be solved and an index index of the connected
nodes.

The 2nd∼12th lines record the calculation results of Eq. 1 in
each component of the table DP . ColumnSize (3rd line) is a function
that returns the number of rows in the table of arguments. The
function RowSize (4th line) returns the number of columns in the
table of arguments. Looking at the 5th line, the Val function returns
a value from a pair of values and subscripts given as arguments. The
tuple_val_max on line 7 is a function that returns the largest value
among the pairs of values and subscripts given as arguments. The
function Index on line 18 returns indexes from a pair of the value
and index given as arguments. During the filling DP , the algorithm
records the subscripts of the selected edges as the solution in rmax.
Because the indexes of the edges to be selected as solutions are
arranged in ascending order, we can obtain the edge set required
by this method by tracing the subscripts of rmax in reverse order,
as shown in lines 13–19.

Computational complexity. Because the DP matrix and rmax
can be calculated simultaneously, each DP𝑖, 𝑗 and rmax𝑖, 𝑗 can be
obtained in constant time. In other words, the time calculation is
𝑂 ( |𝐴| |𝐵 |). On the other hand, the spatial computation is 𝑂 ( |𝐴| |𝐵 |)
because the table size is determined by the number of nodes.

Theory. ECM obtains the optimum solution for 𝑆,𝑇 ∈ N.
Proof.We prove that the algorithm obtains the optimal result by

mathematical induction on the number of vertices of the bipartite
graph 𝐺 = (𝐴, 𝐵).
1The source code is available on our project repository: https://github.com/sumilab/programs/tree/
master/ecm

https://github.com/sumilab/programs/tree/master/ecm
https://github.com/sumilab/programs/tree/master/ecm
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Table 1: Example of test dataset. The first column represents topic categories of the second and forth columns. The second
column is the topic ID of the third column’s topic in W2E dataset. The forth and fifth columns are results of ECM if the third
column’s topic. Due to space limitations, some sentences and events are omitted.

Cat. TOPIC ID Event texts TOPIC ID Event texts

PE TOPIC-896 2016-07-14 Elizabeth Truss is named Secretary
of State for Justice and first ever female Lord
Chancellor of the United Kingdom as former
chancellor Michael Gove is ousted from the cab-
inet.

TOPIC-1780 2016-06-29 The process to elect a new leader
of the Conservative Party to replace outgoing
Prime Minister David Cameron begins in the
United Kingdom.

2016-07-13 The new Prime Minister of the
United Kingdom Theresa May begins forming
her ministry following the end of the Second
Cameron ministry.

2016-07-11 Prime Minister David Cameron an-
nounces he will step down on Wednesday, July
13.

2016-06-30 Former Mayor of London Boris John-
son rules himself out of running in the Tory
leadership contest, a move believed to be influ-
enced by Michael Gove’s announcement earlier
in the day to run for the leadership.
2016-07-05 Home Secretary Theresa May gets
165 votes after the first ballot of Conservative
members of parliament to select a new Leader
and the next Prime Minister.

S TOPIC-1534 2016-09-10 In tennis, German Angelique Kerber
defeats Czech Karolína Plíšková in three sets to
win the 2016 US Open women’s singles title.

TOPIC-1996 2016-01-31 In tennis, defending champion No-
vak Djokovic of Serbia defeats second seed
Andy Murray of the United Kingdom in the
men’s singles in straight sets. It is Djokovic’s
third straight Grand Slam title.

2016-09-11 In tennis, Swiss Stan Wawrinka de-
feats Serbian Novak Djokovic in four sets to
claim the 2016 US Open men’s

2016-01-30 In tennis, Angelique Kerber of Ger-
many tops (2–1) defending champion Serena
Williams of the United States, 6-4, 3–6, 6–4, to
win the Women’s Singles. This is Kerber’s first
Grand Slam title.

Base case: When |𝐴| = |𝐵 | = 1, the DP is DP1,1. This indicates
that the solution is to use only the edge (1, 1). It is trivial to use the
edge as the solution. Therefore, ECM obtains the optimal result for
|𝐴| = |𝐵 | = 1.

Induction step: Let 𝑆,𝑇 ∈ N be given and suppose ECM obtains
the optimal result for 𝑆 = |𝐴|,𝑇 = |𝐵 |. Consider the case of |𝐴| =
𝑆 + 1. We consider how to find the optimal solution when any edge
connected to the node 𝐴𝑆+1 is selected as the bottom side. At this
time, the optimal solution must already be found for all the edges
above the selected edge. From the condition, the optimal solution
has already been found for all edges except the edge connected to
the node 𝐴𝑆+1. Moreover, the other edges connected to node 𝐴𝑆+1
are not the upper edges of the selected edge. Therefore, because
the optimal solution is found for all the edges above the selected
edge, the optimal solution may be found even when |𝐴| = 𝑆 + 1.

The optimum solution can be obtained for |𝐵 | = 𝑇 + 1 in the
same way.

5 EXPERIMENTAL EVALUATIONS
5.1 Experimental setting
5.1.1 Dataset. We used the W2E dataset [6] that contains events
listed as a topic in this evaluation. The W2E dataset contains 3,083
topics consisting of 5,160 events recorded in Wikipedia’s current
event portal as of 2016. The events in theW2E dataset were collected
from 10 categories of events, including the US presidential election,
UK’s European Union membership referendum, Middle East wars,
Summer Olympics, and disasters in North America. These events
were manually aggregated with multiple related events as topics.
In addition, each topic has one of the following 10 categories: Sport
(S), Armed conflicts and attacks (AA), Business and economy (BE),
Science and technology (ST), Arts and culture (AC), Law and crime
(LC), Politics and elections (PE), International relations (IR), Dis-
asters and accidents (DA), and Health and medicine (HM). Tab. 1
shows examples of W2E dataset topic categories, topics, and their
events.

As some W2E topics contain only one event, we used topics for
more than one event to construct the bipartite graph in this study.
Furthermore, we prepared pairs of similar topics before performing
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Table 2: Statistics of test dataset.

Num. of events 1,041
Ave. num. of tokens 31.79
Num. of topics 322
Ave. num. of events per topic 3.23

Table 3: Statistics of test dataset by category.

S AA BE ST AC
Ave. Num. of events 2.92 3.26 3.85 2.0 2.66

Num. of topics 13 73 7 2 3
Ave. Num. of tokens 29.44 27.15 34.59 23.25 34.37

LC PE IR DA HM
Ave. Num. of events 3.06 3.14 3.43 3.11 4.66

Num. of topics 32 84 57 45 6
Ave. Num. of tokens 34.53 31.87 38.20 29.54 28.25

the experimental evaluation2. Two volunteers were asked if the
pairs were similar or not. If both of them agreed that the pairs were
similar to each other, we maintained them; otherwise, we discarded
them. Tab. 2 shows the statistics of the subset of the W2E dataset
used in this evaluation. In addition, Tab. 3 shows the statistics by
topic category.

5.1.2 Baselines. We compare ECM with the following two meth-
ods.
• BM25: Okapi BM25 [16] is a widely used ranking function
that ranks a set of documents based on the query terms
appearing in each document.
• TF-IDF + dynamic time warping (DTW): DTW measures the
similarity between time series data by finding the distance
between each point of the two-time series in a brute force
fashion and then finding the path where the two-time series
are shortest after finding all of them.

TF-IDF indicates the importance of a word to a document in
the dataset. This score is a multiplication of the term frequency
and inverse document frequency. Term frequency refers to how
frequently each term (word) occurs in each document whereas
the inverse document frequency represents how rarely each term
occurs in all documents. The formal definition is as follows.

TFIDF (w, d,D) = tf 𝑤,𝑑 ∗
| D |

| {𝑑 ′ ∈ D | 𝑤 ∈ 𝑑 ′} | (2)

where tf 𝑤,𝑑 is the number of times a word𝑤 occurs in a document
𝑑 , and | • | is the size of •. The second term of this equation gives
the number of all labeled data divided with labeled data including
𝑤 .

5.1.3 Evaluation Criteria. In this paper, we evaluate the aforemen-
tioned algorithms and ECM by mean average precision (MAP),
precision (𝑃 ), recall (𝑅), and F1-score (𝐹1). The MAP is calculated
by considering the mean AverageP , which averages precision at
K (ap@K) indicating precision among the top K documents. The

2The dataset is available in http://www.ysumi.sakura.ne.jp/sim_event_causalities.csv

Table 4: Similarity scores for feature creation. ”-“ indicates
that no results were obtained correctly. The bold-faced num-
bers indicate the best for a particular term.

TF-IDF LSA LDA Doc2Vec
CosSim 59.8% 48.8% 26.4% 14.3%
𝐸𝑢𝑐𝑙𝑖𝑑 17.7% 11.2% 20.2% 15.0%
𝐽𝑆 14.0% - 17.7% -

formal equation of average precision is defined as follows:

Precision(k) =
1
𝑘

𝑘∑
𝑖

𝑟𝑖 (3)

AverageP =
1
| D𝑡 |

∑
𝑘<𝑁

𝑟𝑘Precision(k) (4)

where 𝑟𝑖 represents whether the prediction is correct or not using
1 (correct) or 0 (wrong), D𝑡 is a set of test data and 𝑁 is the last
rank where a classifier assigns a correct label to the test data.

To calculate 𝑃 , 𝑅, and 𝐹1 scores, we use only k = 1, which rep-
resents the highest score of the results of applying each search
algorithm.

5.2 Results
5.2.1 Bipartite graph creation. We first analyze feature vector cre-
ation and the measurement of similarity between the two vectors
that are necessary to build a bipartite graph.

Q.Which feature vector construction method and similarity
evaluation method should be used to construct a bipartite
graph to apply ECM?
A. The combination of TF-IDF and cosine similarity is the
best.

To create feature vectors, we used TF-IDF, latent semantic anal-
ysis (LSA) [3], latent Dirichlet allocation (LDA) [2], and Doc2Vec
[11], which capture latent semantic text structures. LSA performs a
matrix decomposition on the term-document matrix whereas LDA
is a probabilistic model assuming a Dirichlet prior over the latent
topics. Doc2Vec is a neural network-based algorithm.

Pairwise similarities of events are then computed using the co-
sine similarity (CosSim), Euclidean distance (𝐸𝑢𝑐𝑙𝑖𝑑), and Jensen-
Shannon divergence (𝐽𝑆).

Tab. 4 shows the evaluation result of 𝑃 (precision) for bipartite
graph construction. These scores are the results of ECM indicating
that each score represents the difference in how to build a bipartite
graphwhereas the topic search algorithm by dynamic programming
is the same. From this result, we can observe that using TF-IDF
and cosine similarity is the best for the graph construction. In
the following, we use only the two methods for bipartite graph
construction.

5.2.2 Retrieval results. In the remainder of this section, we analyze
the retrieval results of the three algorithms.

http://www.ysumi.sakura.ne.jp/sim_event_causalities.csv
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Table 5: Evaluation results. The bold-faced numbers indicate
the best for a particular term given the metric.

MAP 𝑃 𝑅 𝐹1
BM25 33.1% 25.8% 25.8% 25.8%
DTW 54.4% 49.4% 49.4% 49.4%
ECM 62.5% 59.8% 59.8% 59.8%

Table 6: Correct retrieval results by ECM.

S AA BE ST
Num. of correct results 8 46 3 1

Ratio 61.54% 63.01% 42.86% 50.00%
AC LC PE IR

Num. of correct results 0 7 56 35
Ratio 0.00% 21.88% 66.67% 61.40%

DA HM
Num. of correct results 26 6

Ratio 57.78% 100.00%

Q. Which is the best search algorithm among BM25, DTW,
and ECM?
A. ECM is the best.

Tab. 5 shows the results for the three algorithms. The results
showed that the proposed algorithm obtained the best result. It
also shows that the order of events is important to consider when
evaluating the similarity between events when considering causal
relationships because all scores of the BM25 were the lowest among
the three algorithms.

5.3 Error Analysis
In the following section, we discuss the results of analyzing only
the proposed algorithm. In addition, we focus on the case of k = 1,
which represents the result that the ECM is the most similar to the
query.

Q. Which category ECM searched most correctly?
A. All HM topics obtained the correct results. In addition,
over 60% of the topics in the PE, AA, S, and IR categories
yielded correct results.

At the beginning, we analyze the distribution of topic categories
for which ECMhas achieved correct results. This counts the number
of matches between the categories of the topic given as the input
and output by the ECM as k=1.

Tab. 6 shows the results. First, we can observe that ECM obtained
the correct results for all topics in HM. PE, AA, S, and IR also
yielded good results because more than 60% of the topics in their
categories obtained correct results. However, many topics in AC
and LC have missed obtaining correct results.

T
r
u
e

Output

Figure 6: ECM wrong retrieving results

Q.Which category of topics was wrongly predicted for each
category topic?
A1. PE topics were often misjudged as AA.
A2. LC topics were often misjudged as AA or DA.

Next, we analyze the results that the ECM wrongly determined
to be the most similar. This counts which category the expected
result topic category is wrong with.

Fig. 6 shows the results. In this figure, each row represents the
expected result’s topic category whereas each column indicates the
topic category that resulted as the most similar.

As shown in the results, we can see that topics of PE were
often misjudged as topics of AA. One possible reason for this mis-
judgment is that the number of topics in AA is the second largest
number of topics. Compared with the number of topics betweenAA
and others excluding PE, AA has approximately 2∼37 times more
topics than other categories. In addition, LC is often misjudged as
either AA or DA. We discuss this point in the following analysis.

Q. Why were the results of AC and LC weak?
A1. LC topics tend to have relatively higher values of mu-
tual information than topics in other categories.
A2. In AC and LC categories, the Jaccard coefficient scores
between topics in each category are lower than the average.

Next, we explore why ECM obtained the wrong results for many
topics in AC and LC. We first analyze the similarity of the topics
using the Jaccard coefficient and mutual information (MI). The
Jaccard coefficient counts the number of words shared between the
two texts. MI measures the mutual dependence between the two
texts. Their formal definitions are as follows:

Jaccard (𝐴, 𝐵) =
| 𝑇𝐴 ∩𝑇𝐵 |
| 𝑇𝐴 ∪𝑇𝐵 |

(5)

𝑀𝐼 (𝐴, 𝐵) =
∑
𝑎∈𝐴

∑
𝑏∈𝐵

𝑝 (𝑎, 𝑏) log
(
𝑝 (𝑎, 𝑏)
𝑝 (𝑎)𝑝 (𝑏)

)
(6)

where: | · | is the size of the set and 𝑇𝐴 and 𝑇𝐵 are the tokens
included in category 𝐴 and 𝐵, respectively. The higher the score of
the measurements, the more correlated they are.
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Figure 8: Correlationmeasure usingMutual Information be-
tween topics of different categories

Table 7: Topic similarity in the same category.

S AA BE ST AC
Jaccard 0.11 0.11 0.09 0.19 0.08
MI 0.10 0.10 0.11 0.27 0.05

LC PE IR DA HM Total
Jaccard 0.10 0.12 0.10 0.13 0.13 0.12
MI 0.09 0.13 0.10 0.13 0.10 0.12

Figs. 7 and 8 show Jaccard coefficients and MI scores between
topics in different categories. As shown in Fig. 8, LC topics tend to
have relatively higher values of mutual information between AA
and DA. This is probably the reason why several LC topics were
misjudged as topics in the two categories.

Next, Tab. 7 shows the Jaccard coefficient and MI scores of the
topics in the same category. We can observe that both AC and
LC are smaller than the overall average value in both scores; in
particular, the MI scores of AC are the lowest among all categories.
These results indicate that news descriptions in category AC rarely
share the same words.

6 CONCLUSIONS
In this paper, we proposed an algorithm for measuring the similar-
ity between events focusing on causal relationships. The algorithm

solves a maximum weight matching problem with a novel con-
straint in which the edges that are solutions do not intersect on
a bipartite graph whose nodes and edges represent events and
their similarity, respectively. We implemented this algorithm and
compared it to previous studies. We confirmed that the proposed
algorithm obtained the best results.

There are three possible directions for future works. The first is
to implement a search engine using this algorithm. The second is to
generalize the problem by using causal relationships expressed in a
tree structure. The third is to evaluate how this algorithm enhances
the historical analogy of learners.

Acknowledgements.Thisworkwas supported in part byMEXT
Grant-in-Aids (#19K20631).

REFERENCES
[1] Robert P. Abelson and Ariel Levi. 1985. Decision Making and Decision Theory,

Handbook of Social Psychology. 231–309.
[2] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent Dirichlet

Allocation. J. Mach. Learn. Res. 3 (March 2003), 993–1022.
[3] Scott Deerwester, Susan T. Dumais, George W. Furnas, Landauer Thomas K., and

Richard Harshman. 1990. Indexing by latent semantic analysis. Journal of the
American Society for Information Science 41, 6 (1990), 391–407.

[4] Thomas Gilovich. 1981. Seeing the Past in the Present: The Effect of Associations
to Familiar Events on Judgments and Decisions. Journal of Personality and Social
Psychology 40, 5 (1981), 797.

[5] Ruocheng Guo, Lu Cheng, Jundong Li, P. Richard Hahn, and Huan Liu. 2020. A
Survey of Learning Causality with Data: Problems and Methods. ACM Comput.
Surv. 53, 4, Article 75 (July 2020), 37 pages.

[6] Tuan-Anh Hoang, Khoi Duy Vo, and Wolfgang Nejdl. 2018. W2E: A Worldwide-
Event Benchmark Dataset for Topic Detection and Tracking. In Proceedings of the
27th ACM International Conference on Information and Knowledge Management
(Torino, Italy) (CIKM ’18). Association for Computing Machinery, New York, NY,
USA, 1847–1850.

[7] Ryohei Ikejiri. 2011. Designing and Evaluating the Card Game which Fosters the
Ability to Apply the Historical Causal Relation to the Modern Problems. Japan
Society for Educational Technology 34, 4 (april 2011), 375–386. (in Japanese).

[8] Ryohei Ikejiri. 2011. Rekishi no ingakankei wo gendai ni ouyou suru tikara
wo ikusei suru ka-do ge-mu kyouzai no dezain to hyouka. Japan Society for
Educational Technology 34, 4 (2011), 375–386.

[9] Ryohei Ikejiri and Yasunobu Sumikawa. 2016. Developing World History Lessons
to Foster Authentic Social Participation. Journal of educational research on social
studies 84 (July 2016), 37–48.

[10] Aljaž Košmerlj, Evgenia Belyaeva, Gregor Leban, Marko Grobelnik, and Blaž For-
tuna. 2015. Towards a Complete Event Type Taxonomy (WWW ’15 Companion).
ACM, New York, NY, USA, 899–902.

[11] Quoc Le and Tomas Mikolov. 2014. Distributed Representations of Sentences
and Documents, Vol. 32. ICML’14, Bejing, China, 1188–1196.

[12] Zhen Lei, Ling-da Wu, Ying Zhang, and Yu-chi Liu. 2005. A System for Detecting
and Tracking Internet News Event (PCM’05). Springer-Verlag, Berlin, Heidelberg,
754–764.

[13] Bundit Manaskasemsak, Bodin Chinthanet, and Arnon Rungsawang. 2016. Graph
Clustering-Based Emerging Event Detection from Twitter Data Stream (IC-
NCC’16). ACM, New York, NY, USA, 37–41.

[14] Yajie Qi, Li Zhou, Huayou Si, Jian Wan, and Ting Jin. 2017. An Approach to News
Event Detection and Tracking Based on Stream of Online News, Vol. 2. 193–196.

[15] Kira Radinsky and Sagie Davidovich. 2012. Learning to Predict from Textual
Data. J. Artif. Int. Res. 45, 1 (Sept. 2012), 641–684.

[16] Stephen Robertson, S. Walker, S. Jones, M. M. Hancock-Beaulieu, and M. Gatford.
1995. Okapi at TREC-3. In Overview of the Third Text REtrieval Conference (TREC-
3). Gaithersburg, MD: NIST, 109–126.

[17] Yasunobu Sumikawa and Ryohei Ikejiri. 2021. Feature selection for classifying
multi-labeled past events. Int. J. Digit. Libr. 22, 1 (2021), 63–83.

[18] Yasunobu Sumikawa and Adam Jatowt. 2018. Classifying Short Descriptions of
Past Events (ECIR ’18). Springer International Publishing, 729–736.

[19] Yasunobu Sumikawa and Adam Jatowt. 2018. System for Category-driven Re-
trieval of Historical Events (JCDL ’18). ACM, New York, NY, USA, 413–414.

[20] Zhicong Tan, Peng Zhang, Jianlong Tan, and Li Guo. 2014. A Multi-layer Event
Detection Algorithm for Detecting Global and Local Hot Events in Social Net-
works. Procedia Computer Science 29 (2014), 2080–2089. 2014 International
Conference on Computational Science.


	Abstract
	1 Introduction
	2 Definitions
	2.1 Event and Causal relationship
	2.2 Bipartite Graph
	2.3 Ordered Bipartite Graph
	2.4 Maximum Weight Matching

	3 Related Work
	3.1 Event Classification and Detection
	3.2 Causal Relationship Extraction

	4 ECM Algorithm
	4.1 Theory
	4.1.1 Ordered Bipartite Graph Construction
	4.1.2 Solving Proposed Maximum Weight Matching Problem on Ordered Bipartite Graph

	4.2 Implementation

	5 Experimental Evaluations
	5.1 Experimental setting
	5.1.1 Dataset
	5.1.2 Baselines
	5.1.3 Evaluation Criteria

	5.2 Results
	5.2.1 Bipartite graph creation
	5.2.2 Retrieval results

	5.3 Error Analysis

	6 Conclusions
	References

