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Abstract The study and analysis of past events can provide
numerous benefits. While event categorization has been pre-
viously studied, it usually assigned only one event category
to an event. In this study, we focus on multi-label classi-
fication for past events, which is a more general and chal-
lenging problem than those approached in previous stud-
ies. We categorize events into thirteen different types us-
ing a range of diverse features and classifiers trained on a
dataset that has at least 50 labeled news articles for each
category. We have confirmed that using all the features to
train classifiers has statistical significance and improves all
micro- and macro-average F1, multi-label accuracy, average
precision@5, area under the receiver operating characteris-
tic curve and example-based loss functions.

Keywords Multi-label classification; document classifica-
tion; history; event

1 Introduction

Study and analysis of past events can provide numerous ben-
efits, including an enhanced perception of the legacies of
the past in the present and enabling learners to make valu-
able connections through time [59,21,14]. Indeed, one of
the goals of imparting recent history education at high schools
is to enable students to study how people or organizations
in history tried to solve problems in described events. Stu-
dents can then apply this knowledge to consider creative so-
lutions to social problems in present events [40,4]. In ad-
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dition, there are many applications of this knowledge if we
correctly understand event documents. For example, by be-
ing able to tell the categories of mentioned events one could
better understand thanks to studying which past event types
are mentioned in news articles. Equipped with knowledge
on the categories of past event mentions one could also fos-
ter collective memory studies [1] as well as support search
methods for finding historical events. Finally, the classifica-
tion technique could be used for constructing thematic time-
lines or event lists (e.g., list of disasters/accidents in Asia,
timeline of armed conflicts in the USA).

We focus in this work on the problem of multi-label
classification (MLC) for past events that assigns more than
one category to each event. For example, if we read the
Wikipedia article1 to know what the 2014 West Africa Ebola
outbreak caused in our life, we can see that it killed many
both human and animal (environment event), some researchers
developed a vaccine (technology event), they then reported
the details and their statistics (study event). Tab. 1 shows
other examples of multi-labeled events.

The main challenge in MLC for past events lies in the
scarcity of data, the ambiguity of expressions and variety of
diverse means by which events can be referred to. Further-
more, frequently, in realistic scenarios, events are not called
by their explicit names, or, they may have no known names2.
Consequently, their automatic detection using named entity
recognition (NER) tools is problematic. We make an as-
sumption that the context of such documents (e.g., surround-
ing sentences in the original text) is not available to cover
also the case of standalone documents like the lists of signif-
icant events in each month of the Wikipedia’s Current Por-
tal3. Hence, we rely only on the event document itself.

1 https://en.wikipedia.org/wiki/West_African_Ebola_virus_
epidemic

2 Usually, only very popular or important events have own names.
3 https://en.wikipedia.org/wiki/Portal:Current_events
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Table 1 Example events. Our classifier takes documents of events;
however, we include only short documents or names of events here
for simplicity. The abbreviated category names are used: Reign (Rg),
Diplomacy (Dp), War (Wr), Production (Pr), Commerce (Cr), Study
(St), Religion (Rl), Literature and Thought (LT), Technology
(Tc), Popular Movement (PM), Community (Cn), Disparity (Ds)
and Environment (En).

Event Categories
Agnes Chan named UNICEF Regional Ambas-
sador for East Asia and Pacific Region.

Dp, Cn and LT

The World Strikes a Deal on Climate Change. En

Paris attacks. Dp, Rg and PM
ISIS Terrorists Strike on Three Continents. Dp, Rl, Wr and

PM

Same-Sex Marriage Debate. LT and Cn
Ebola outbreak. En, St and Tc
The Scottish independence referendum. Rg, PM and Cn

To provide sufficient data we use a range of features
based on lexical analysis as well as ones based on distribu-
tional word representation using neural networks. Though
there are several labeled event datasets on the Web such as
Wikipedia’s Current Portal, many of them assign only one
category to each event. To perform MLC for events, we have
created a new database and opened it on a public repository
(Sec. 3). We use news articles that have one or more than two
event categories in the created dataset to train our classifiers
from the features.

We conducted experimental evaluations to confirm how
well using all feature types improve classification accuracies
on the created new database. We confirmed that our method
achieved approximately 60% in the micro-average F1 score
that is the best among all compared methods. We also evalu-
ated that this score is a statistically significant improvement
from using each feature type to train classifiers. In addi-
tion, we performed other measurements (macro-average F1,
multi-label accuracy, average precision@5, hamming loss,
log loss, ranking loss scores, and area under the receiver op-
erating characteristic curve (AUC)), which are widely used
in MLC studies, and confirmed that our method achieved the
best scores of all compared methods.

Problem Statement. In our classification, each docu-
ment describing an event may have more than one label. The
formal definitions are given as follows: Let L be a finite and
non-empty set of labels {l1, l2, ..., lm}. Let X and Y be the
input and the output spaces, respectively. Given a dataset
Dl = {(xi,yi)}Ni=1 ⊂ X × Y, yi j ∈ {0, 1}m, MLC predicts
labels ŷ = {yk | 1 ≤ k ≤ m} for a document. The assigned
labels are usually referred to as the relevant labels for the
input document.

Definition of the past. In this paper, we define past events
as events that occurred before training classifiers.

Paper organization. The remainder of this paper is or-
ganized as follows: Section 2 provides summaries of sev-

eral related works. Section 3 describes the dataset this paper
used. Next, the proposed method in this paper is described
in Section 4. We perform experimental evaluations to con-
firm the effectiveness of the proposed method in Section 5
and then conclude remarks in Section 6.

2 Related Works

As this study performs classification for past events, we sum-
marize differences of this study from classification and history-
related studies. In particular, this study explores how well
it is able to create feature vectors to train classifiers; thus,
we separately describe differences of past feature selection
studies and training classifiers in Section 2.1 and Section
2.2, respectively.

We then focus on identifying differences of this study
from history-related past studies by dividing this sub-section
in events focused on classification, history education, collec-
tive memory, information retrieval and data mining in Sec-
tion 2.3, Section 2.4, Section 2.5, Section 2.6, and Section
2.7, respectively.

2.1 Feature Selections and Extractions

To train classifiers it is necessary to create feature vectors
from documents. One of the simplest methods is to count the
number of word occurrences in documents to set them as in-
dexes of vectors corresponding to the documents. However,
this simple method presents problems such as high compu-
tational complexity and overfitting as there are numerous
kinds of words in documents leading to the high feature
space dimensionality.

Semantic analysis such as latent semantic analysis (LSA),
latent Dirichlet allocation (LDA) [2] and Doc2Vec [37] has
become a popular way to reduce the dimensionality of fea-
ture space. Using semantic analysis creates feature vectors
from topic distributions for all documents and trains clas-
sifiers from the feature vectors. Another popular method of
dimensional reduction is to use statistical approaches [64,5]
or mutual information [38,39,12].

Feature extraction is another widely applied method, for
example principal component analysis (PCA) [72]. Gopal
and Yang [19] defined meta-level features by transforming
conventional representations of data and categories into a
relatively small set of link-based features.

Similar to the case of past studies, we use word- and
semantic-based feature vectors and reduce the dimension-
ality of feature space after combining all feature vectors.
In addition to the popular feature types, we take temporal
nouns that occur only for specific durations to replace them
with their contexts (meaning the top-similar words for the
nouns) as several events tend to include names of persons,
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groups and other entities. From our experimental results, we
show that this replacement of temporal nouns with their con-
texts plays a key role in this objective.

2.2 Training Classification Methods

MLC algorithms typically consist of two steps: learning to
rank categories for data and learning to put a threshold on
whether each category is assigned or not. For the first step,
the simplest method is to employ a binary-classifier, such
as support vector machine (SVM), naive bayes probabilis-
tic classifiers, or random forests [67]. This binary-classifier
based method learns a scoring function for each category in-
dependently from the scoring functions for other categories,
and then scores test data for each category independently.

Several studies utilize global optimization techniques.
Elisseeff and Weston proposed Rank-SVM to maximize the
sum of the margins for all categories at the same time whereas
binary SVM maximizes the margin for each category inde-
pendently [15]. As another method, the k-Nearest Neighbor
is widely used for multi-label classification [10,70,73].

McCallum [43] trains a classifier by EM algorithm to
take mixture models into account for the training because
each data point of a category can be considered as it is gen-
erated from a distribution of the category. However, the EM
algorithm is typically used to train classifiers as the semi-
supervised learning (SSL) style [8,18,49,76]. SSL is a well-
known procedure to train classifiers with decreasing manual
category assignment costs in the case where few labeled data
and many unlabeled data are acquired. For the other SSL
based classification type, graph-based methods are proposed
[76]. In graph-based methods, data are represented as nodes
and the similarity between two data points is represented as
the weight of an edge.

In the task of categorizing short documents, data scarcity
becomes a more severe problem than in long documents. To
overcome this problem, some studies use contextual infor-
mation. Sriram et al.’s [58] approach classifies tweets by us-
ing author information, URL and hashtags. Nie et al. [48]
use a Naive Bayes classifier equipped with texts, image and
video contents for Q&A classification. Lee et al. [41] clas-
sify queries using user-click behavior to identify user goals
in web searches. On the other hand, using external infor-
mation such as Wikipedia is also a popular approach. Ze-
likovitz and Marquez [71] train a classifier with LSA [11]
based on Wikipedia data, and Phan et al. [54] propose a gen-
eralized classification framework with the topic model. This
framework first trains the topic model on texts of an exter-
nal resource. It then trains classifiers after building a moder-
ate size labeled training dataset. Explicit Semantic Analysis
(ESA) is applied in [62] to map short texts to Wikipedia ar-
ticles.

Training classifier assumes that feature vectors are given;
in other words, the training designs an algorithm to project
feature vectors into categories. Since this paper proposes a
novel feature selection method, this paper takes any algo-
rithms of training models. Indeed, this paper applies SVM,
Naive Bayes and graph-based methods that are described
above.

2.3 Event Classification

Kosmerlj et al. proposed event categories that were origi-
nally defined by Wikipedia editors, and then investigated
automatic classification using TF-IDF created from news
articles [35]. Several events can be mentioned with a few
sentences, such as news articles containing references to re-
lated events, historical accounts or biographies. Sumikawa
and Jatowt propose a feature selection method to classify
short documents of past events [60]. These studies propose
classifying event document frameworks; however, they are
designed as multi-class classification that assigns only one
category to an event.

2.4 Analyzing History for Education

Studying history is beneficial to understand how the present
shapes, and it can be used to predict the future to some ex-
tent. Indeed, there are classes to learn history starting from
elementary school in many countries. Recently, some his-
torians, education researchers and national guidelines con-
sider that it is important to support learners to connect past
and present to examine what knowledge we can use about
the past to consider solutions to present social issues. This
ability is called historical analogy, and several researchers
have studied effective and efficient methods for enhancing
the historical analogy.

Drie and Boxtel [13] find that there are basic compo-
nents to enhance historical reasoning. Mansilla examined
what the triggers for successfully using historical analogy
are [3]. Lee proposes a framework that makes connections
between events in the past and potentially between events in
the past and present [40]. This framework is an overview of
long-term change patterns, and an open structure, capable
of being modified, tested, improved, and even abandoned.
Ikejiri designed a competitive card game [24] where players
construct causal relations for an event. From the construc-
tion, players can identify causal relationships within modern
societal issues, and compare how two past and present issues
are similar from a viewpoint of causal relationship structures
to stimulate historical analogy. In addition, Ikejiri et al. pro-
pose another competitive card game in which players learn
economic policies that are actually enforced in the past to
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create new policies that would revitalize Japan’s economy
[25].

2.5 Analyzing Collective Memories

The concept of collective memory (social memory) popular-
ized by Halbwachs [20,22] describes the shared reflection
of the past within social groups. Collective memory can be
contrasted with the concept of collective amnesia defined
by Jacoby [28] as forceful or unconscious suppressions of
memories, especially those related to disgraceful or incon-
venient events.

Traditionally, research on collective memory has been
based on small-scale investigations of personal accounts and
the activities of political and cultural institutions. Recently,
some researchers have used computational approaches for
the quantification of the characteristics of social memory
over large text datasets. Cook et al. [9] investigated the de-
cay of fame over time based on a collection of news articles
spanning the 20th century. Au Yeung and Jatowt [1] have
studied memory decay and the way in which past years are
remembered based on the dataset of English news articles
spanning 90 years. When it comes to other document gen-
res, Ferron and Massa [16] and Kanhabua et al. [34] pro-
posed using Wikipedia as a global memory space. There are
several literature reports using Wikipedia to study collec-
tive memory [30,17]. Social media has been commonly uti-
lized to study public attitudes towards real time events such
as the US American elections [66]. Microblogs are popu-
lar tools for sharing and finding information related to the
past as well as media. There is an ongoing project that fo-
cuses on the First World War [7] and compares commemora-
tive cultures across countries. Sumikawa et al. [61] attempt
to fill this gap by focusing on Twitter as a common social
media platform frequently used in computational social sci-
ence. This study is exploratory and aims to provide an initial
broad investigation of history-related content sharing in so-
cial networks.

2.6 History-related Information Retrieval

The current Web has numerous digital archives including
historical images and documents, as results of digitization.
For effective searching for what users want, searching past
objects is becoming popular research topic to aid historians
[51,57].

Singh et al. [57] proposed an IR framework to support
historians. According to the literature, if historians investi-
gate an entity, they first try to see a big picture of the en-
tity. Then, they further search the entity for specific aspects.
Thus, it is important for historians’ information seeking be-
havior to show not only important time windows but also

different aspects. Zhang et al. [74] propose a framework
that detects entities counterparts over time. The framework
bridges two different vector spaces that are created for dif-
ferent time-ranges such as [1900–1950] and [1960–2010] by
transformation matrix, which maps an entity from one vec-
tor space into another; thus, this framework takes a word.
They extend this framework to make use of hierarchical clus-
ter structures [75]. Searching images related to history is
also proposed [6].

2.7 Mining History-related Knowledge

Growing the number of digital archives gives us studies that
extract beneficial history-related knowledge, such as eval-
uating the significance of historical entities[63], the impor-
tance of historical persons [31], and semantic change of words
[29]. These studies try to find beneficial information from a
large amount of data. Considering mining the past, there is
literature to add useful information, such as timestamps to
entities [32], analysis trends [23], and for trying to predict
future from past events [56,55,33].

3 Data Collection

3.1 Event categories

This paper uses thirteen categories defined in [26,27] in or-
der to connect past and present events. The event categories
are: Commerce (Cr), Diplomacy (Dp), Production (Pr),
Reign (Rg), Environment (En), Religion (Rl), Disparity
(Ds), Study (St), Community (Cn), Literature and Thought
(LT), Popular Movement (PM), Technology (Tc) and War
(Wr). These categories are defined by Encyclopedia of His-
toriography [52]. Tab. 14 shows example events for the 13
categories.

3.2 Datasets

In this paper, we use news articles describing events, which
were published by Japanese companies including NHK news
and Mainichi news5. These articles typically have enough
words for classification; however, most news articles are as-
signed categories defined by their companies. Thus, they
are usually different from the above 13 event categories. To
train our classifiers, we manually assigned more than one
event category from the list to several news articles. The as-
signment processes were done by two Japanese researchers

4 We use Japanese news articles to evaluate classifications in this paper as de-
scribed in Sec. 5. Even though we did not use the listed example events in the evalua-
tion, we show them to aid understanding what kinds of events can be assigned to from
the 13 categories.

5 Some articles are stored in CD-Mainichi Newspapers 2012 data, Nichigai Asso-
ciates, Inc., 2012 (Japanese). The others are collected by Web crawling.
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working on history education research and HistoInformat-
ics. They all have Ph. D. degrees; therefore, the dataset is
created by experts. This new ground truth dataset has been
opened on a public repository6.

3.3 Statistics of Dataset

Tab. 2 shows the dataset statistics. We have prepared 435
labeled articles from Web crawling and the Mainichi news
dataset.

Table 2 Statistics of the whole dataset
Num. of categories 13

Num. of labeled articles 435
Ave. length 1641.8

Ave. num. of categories per document 2.6
Ave. num. of document per category 87.2

We show the number of articles per category in Tab. 3.
For each event category, there are at least 50 labeled articles.

Table 3 Statistics for each category. This table shows the numbers
of labeled data for a category c (Dl

c).
Cat. Num. ofDl

c Cat. Num. ofDl
c

Cr 179 St 59
Dp 187 Cn 60
Pr 108 LT 55
Rg 93 PM 52
En 69 Tc 77
Rl 50 Wr 59
Ds 86

4 MLC for Past Events

For classifying past events, our algorithm first creates ef-
fective feature vectors to train multi-label classifiers (Sec-
tion 4.1). It then trains the classifiers including probabilistic,
non-probabilistic and graph-based ones (Section 4.2).

Algorithm 1 shows an overview of classifier training for
past events. First, this algorithm applies Preprocess to cre-
ate tokens after removing stop words and stemming. As sev-
eral natural languages such as Japanese and Korean do not
distinguish words by spaces, it is necessary to apply mor-
phological analysis to divide words during this preprocess.

6 https://doi.org/10.5281/zenodo.3258150. This opened dataset excludes
all texts of the articles to respect copyright law. However, it is possible to obtain the
texts because the opened dataset includes event IDs defined in Mainichi Newspapers
2012 data or URLs used to Web crawling. Thus, after buying Mainichi Newspapers
2012 data or recrawling the URLs with Wayback Machine (the accessed day is 18
June, 2019), their corresponding texts can be retrieved.

Algorithm 1 Algorithm of multi-label classification for past
events.

Input: A set of labeled documents docsl, a set of unlabeled docu-
ments docsu and a set of labels for the labeled documents l

Output: A classifier FVecs
1: Function MLCPastEvents(docsl, docsu, l, k)
2: tokensl, tokensu = Preprocess(docsl),Preprocess(docsu)
3: models = MakeModels(tokensl, tokensu)
4: FVecsl = FeatureSelection(tokensl,models, k)
5: FVecsu = FeatureSelection(tokensu,models, k)
6: clf = TrainClassifier(FVecsl,FVecsu, l)
7: return clf
8: Function Preprocess(docs)
9: tokens = ∅

10: for d ∈ docs
11: tlist = SplitWords(d) // If it is necessary, morphological analy-

sis is applied here
12: validtlist = RemoveStopWords(tlist)
13: tokens.add(validtlist)
14: return tokens
15: Function MakeModels(tokensl, tokensu)
16: lda, lsa, d2v,w2v = TrainSemModels(tokensl, tokensu)
17: dr = TrainDimReductModel(tokensl)
18: return lda, lsa, d2v,w2v, dr

Since this paper uses Japanese documents in experiments,
we apply MeCab [36] as a morphological analysis.

The algorithm then performs MakeModels to train the
LDA, LSA, Doc2Vec and Word2Vec models on the whole
dataset to create semantic-based feature vectors described in
Section 4.1.2. In MakeModels, dimensional reduction mod-
els are also trained on the labeled documents. Then, it ap-
plies the function FeatureSelection to create feature vectors
by applying the dimensional reduction models. As this pa-
per performs SSL training for graph-based classifiers using
unlabeled documents (docsu), this algorithm describes how
to use docsu. If the training method is supervised learning
instead of SSL, the docsu should be ∅ and the training clas-
sifier function (TrainClassifier) does not use it to train clas-
sifiers.

Algorithm 2 Feature Vector Creation
Input: A set of documents docs and a set of models models used

in semantic-based feature vectors
Output: A set of feature vectors FVecs

1: Function FeatureSelection(tokens list,models, k)
2: FVecs = ∅
3: for tokens ∈ tokens list
4: //Word-based features
5: v1 = WordFVecs(tokens, tokens list)
6: // Semantic-based features
7: v2, v3, v4 = SemanticFVecs(tokens,models)
8: // Noun-context-based features
9: v5 = NounContextFVecs(tokens, tokens list, k,models)

10: fvec = DimReduction(v1, v2, v3, v4, v5)
11: FVecs.add(fvec)
12: return FVecs
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4.1 Feature Selection

In this sub-section, we describe how our approach creates
feature vectors to train classifiers. At the beginning, Algo-
rithm 2 shows the overview of the feature selection. First,
this algorithm creates three types of feature vectors. It then
combines these feature vectors to be a single feature vec-
tor. Simply combining the vectors increases the number of
dimensions leading to the curse of dimension, it finally per-
forms dimensional reduction to the combined feature vec-
tors. Once these processes are applied to tokes for all doc-
uments, this function returns the results of applying dimen-
sional reduction methods.

In the remainder of this sub-section, we describe how
to produce each type of feature. To help understanding how
and why we create these features, we use actual texts of Web
news that are used in our experimental evaluation as exam-
ples to see how to create feature vectors. The texts are:

1. D1: イギリスでＥＵ＝ヨーロッパ連合からの離脱協
定案を批判する閣僚の辞任が相次ぐなど政局が混乱
する中、メイ首相は新しい離脱担当相を任命するな
ど政権の立て直しを急いでいます。ただ離脱派の閣
僚が協定案の修正を迫る構えだとも伝えられ、メイ
政権がＥＵとの正式合意にこぎつけられるか、見通
しは立っていません。イギリスでは、ＥＵとの間で
取りまとめた離脱協定案を批判する離脱担当相はじ
め閣僚など４人が相次いで辞任するなど、政局の混
乱が続いています。メイ首相は 16日、ラジオ番組に
出演して、国民からの質問に直接答える形で離脱協
定案の支持を訴えました。その後、新しい離脱担当
相にスティーブン・バークレー氏を任命し、政権の
立て直しを急いでいます。こうした中、離脱派を代
表するフォックス国際貿易相は「協定案に反対してい
る議員は合理的な判断をすべきだ。なんらかの合意
があるほうが何もないよりはましで、いまは経済界
に安定を与えることが国益にかなうことだ」と述べ、
首相を支持する姿勢を示しました。また、辞任の可
能性が取り沙汰されていたゴーブ環境相も「首相を
支持する」と述べ、閣僚の辞任の連鎖は、ひとまず
止まった形です。ただ、ゴーブ氏をはじめ離脱派の閣
僚は週末にも会合を開き、離脱協定案を修正するよ
う首相を説得する方策を探るとも伝えられ、メイ政
権がＥＵとの正式合意にこぎつけられるかどうか見
通しは立っていません。7

2. D2: 安倍総理大臣は政府の会議で、ことしのノーベ
ル医学・生理学賞に選ばれた京都大学特別教授の本
庶佑さんから、若手研究者などへの支援の重要性を
指摘されたことを踏まえ、関係閣僚に対し、支援策
の具体化に取り組むよう指示しました。総理大臣官
邸で開かれた政府の「総合科学技術・イノベーション
会議」で、ことしのノーベル医学・生理学賞に選ば

7 https://www3.nhk.or.jp/news/html/20181117/k10011714161000.
html accessed on 17 Nov. 2018.

れた京都大学特別教授の本庶佑さんが講演し、日本
は基礎研究費と若手研究者の数が減少しており、政
府による支援が必要だと指摘しました。これに対し、
安倍総理大臣は「本庶先生から、基礎研究の重要性
について大変率直なお話をうかがい、改めて国とし
て若手研究者に挑戦の機会を作ることの重要性を強
く認識した」と述べました。そのうえで、安倍総理
大臣は「政府の科学研究費補助金を、若手研究者へ
重点的に配分することなどを着実に実行してほしい」
と述べ、関係閣僚に対し、来年度予算案の編成作業な
どを通じて、基礎研究や若手研究者への支援策の具
体化に取り組むよう指示しました。会議のあと、本
庶さんは記者団の取材に対し「科学的な力がない国
は将来性がなくるので、次の世代の研究者を育てる
ことが重要だ」と話していました。8

The following English texts are translations of the above
Japanese texts.

1. D1: With the government in a state of confusion, such
as the resignation of cabinet ministers criticizing the Eu-
ropean Union (EU)’s draft withdrawal agreement, Prime
Minister May hastened to rebuild her administration, in-
cluding appointing a new Secretary of State for exiting
the European Union. It is also reported that the minis-
ters who are in a position to criticize the draft agreement
on withdrawal are willing to make amendments to the
draft agreement, and there is no prospect of the May
administration being able to form a formal agreement
with the EU. In the UK, there has been confusion over
the political situation. It includes the resignation prob-
lem of the ministers who are in a position to criticize
the draft agreement on withdrawal with the EU and four
other ministers one after another. Prime Minister May
appeared on a radio program on the 16th and appealed
for support for the withdrawal agreement by answering
questions from the public directly. Later, she appointed
Stephen Berkeley as the new Secretary of State for ex-
iting the European Union and is in a hurry to rebuild
her regime. Under these circumstances, Fox, the Inter-
national Trade Minister, who represents the withdrawal
party, said that Legislators who oppose the draft agree-
ment should make reasonable judgments. It is better to
have some kind of agreement than to have nothing, and
now it is in the national interest to provide stability to
the business community. In addition, Gove, the Minis-
ter of the Environment, whose possibility of resignation
was discussed, also stated that he supports the prime
minister, and the chain resignation of ministers has been
halted for the time being. However, Gobe and other min-
isters who are in a position to criticize the draft agree-
ment on withdrawal will also meet on the weekend to

8 https://www3.nhk.or.jp/news/html/20181122/k10011720261000.
html accessed on 22 Nov. 2018.
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find ways to persuade the Prime Minister to amend the
draft withdrawal agreement, and it is forecasted that the
May administration will be in agreement with the EU.

2. D2: Prime Minister Abe directed ministers to work on
the implementation of supporting young researchers at
the government council as Professor Honjo, a special
professor at Kyoto University who was selected for the
Nobel Prize in Medicine and Physiology, highlighted the
importance of supporting young researchers. Professor
Honjo gave a presentation at the government’s confer-
ence called General Science, Technology and Innovation
Conference held at the Prime Minister’s Office in order
to suggest that both amounts of national research funds
for fundamental researches and the number of young
researches have been decreasing and therefore govern-
ment support is needed. Prime Minister Abe stated Pro-
fessor Honjo gave a very candid talk about the impor-
tance of fundamental research and reaffirmed the impor-
tance of creating opportunities for young researchers to
challenge as national support. On that basis, Prime Min-
ister Abe stated, We want the government to carry out
steady distribution of scientific research grants to young
researchers, and told related ministers to work on the
budget proposal for the next fiscal year according to the
presentation given by Professor Honjo. After the meet-
ing, Professor Honjo told reporters that It is important to
bring up the next generation of researchers, as countries
without scientific power have no future.

4.1.1 Word-based features

First, we create TF-IDF vectors (v1) from all the documents
to measure similarity based on their terms. Each element
of this vector is a TF-IDF score for a word indicating how
important the element is to a document in the dataset. This
score is a multiplication of term frequency and inverse doc-
ument frequency. The term frequency means how frequently
each term (word) occurs in each document whereas the in-
verse document frequency represents how rarely each term
occurs in whole documents. The formal definition is given
as follows:

TFIDF(w, d,Dl) = tf w,d ∗
| Dl |

| {d′ ∈ Dl | w ∈ d′} | (1)

where tf w,d is the number of times a word w occurs in a doc-
ument d, | • | is the size of •. The second term of this equa-
tion gives the number of all labeled data divided with labeled
data including w.

Algorithm 3 shows how to use equation 1 for a given
document. As a document is already converted to a token
list, this algorithm calculates the TF-IDF score for each word
list. In the algorithm, vecw represents an index for a word w.

Tab. 4 lists words that are portions of the results of ap-
plying MeCab and removing stop words to the two actual

Algorithm 3 Word-based feature vector creation
Input: A token list for a document t and a set of token list for all

documents tokens
Output: A tf-idf vector

1: Function WordFVecs(tokens, tokens list)
2: vec = [0.0, ..., 0.0] // its size equal to the size of a set of tokens.
3: for w ∈ tokens
4: vecw = TFIDF(w, tokens, tokens list)
5: return vec

example texts (D1 and D2). As word-based features use all
words to make feature vectors, the dimensionality of this
feature’s type tends to be high, leading to sparse vectors. In
our experiments, there are 24,594 words; thus, the dimen-
sionality of v1 is 24,594.

Table 4 Words from example texts. The listed words are sub-sets of
words of the example.

D1 イギリス (UK),ヨーロッパ (Europe),離脱 (break from), ...,メイ
(May),首相 (the Prime minister),新しい (new), ...,迫る (are will-
ing to make),質問 (questions),直接 (directly),答える (answer),合
意 (agreement),見通し (forecasted).

D2 安倍 (Abe),総理 (the Prime),大臣 (minister),政府 (Government),
会議 (council),ノーベル (the novel prize), ...,教授 (professor),講
演 (presentation),研究 (research),支援 (support),踏まえ (accord-
ing to),取り組む (work).

4.1.2 Semantic-based features

Next, we create feature vectors by applying Doc2Vec (v2),
LSA (v3) and LDA (v4) models to capture latent semantic
text structures. These three models capture the latent seman-
tics, but their algorithms differ. Doc2Vec is a neural network-
based algorithm. LSA performs a matrix decomposition (SVD)
on the term-document matrix whereas LDA is a probabilis-
tic model assuming a Dirichlet prior over the latent topics.
As shown in Algorithm 4, these feature vectors are simply
created from paragraph vectors by applying D2vFeature and
topic distributions of LSA and LDA by LSATopicDist and
LDATopicDist, respectively. Note that modelsA represents a
model of A.

Algorithm 4 Semantic-based vector creation
Input: A token list for a document t and a set of token list for all

documents tokens
Output: Doc2vec, lda and lsa feature vec-

tors
1: Function SemanticFVecs(tokens,models)
2: v2 = D2vFeature(tokens,modelsd2v)
3: v3 = LSATopicDist(tokens,modelslsa)
4: v4 = LDATopicDist(tokens,modelslda)
5: return v2, v3, v4



8 Yasunobu Sumikawa, Ryohei Ikejiri

Applying Algorithm 4 for tokens that are results of Prepr-
ocess generates feature vectors whose dimension is 100 as
we set the value as a parameters in all the semantic analysis
(LDA, LSA, Doc2Vec and Word2Vec). As each element of
these vectors indicates a distribution of topics, these vectors
tend to be dense compared with the word-based feature.

4.1.3 Noun-context-based features

The objective of this feature type is to smooth the tempo-
ral effects of words used for specific temporal durations. In
this paper, we call this kind of word a temporal word. As
this study classifies texts of events, names of persons, events
and groups are often used in documents such as, who does
what, locations where the events occurred and so on. Since
some words occur for specific durations, our algorithm re-
places temporal words with semantically equivalent words
that are commonly used for all durations. For example, two
texts Abraham Lincoln won the election and Donald Trump
won the election can be targets of this study. If it is possible
to identify that both Abraham Lincoln and Donald Trump
can be replaced with the president, then the two texts be-
come completely the same texts.

In this paper we apply a simple strategy that replaces
all nouns with their semantically similar words. From this,
temporal words can be removed by the replacements. This
study focuses on nouns as this type of word plays a key role
in distinguishing event categories. For example, diplomatic
events tend to include names of politicians whereas com-
mercial events frequently mention production items. To per-
form the replacement, we use two assumptions: 1) words
that are frequently used together are semantically similar to
each other and 2) meanings of frequent terms (such as presi-
dent, the prime minister, propose, accident and cause) can be
the same at different points in time. The first assumption is
widely used in natural language processes such as LSA and
Word2Vec. This study uses this assumption to locate words
for replacement. The second assumption uses the observa-
tion that it is hard for the dominant meaning of frequently
used words to change in several languages [53,42]. For ex-
ample, the president tends to be used in political activities
such as nomination, defeat, serve, party, vote, and congress.
Indeed, these words are commonly used in Wikipedia ar-
ticles for Abraham Lincoln and Donald Trump. Thus, this
study uses the second assumption as a reason for why our
algorithm performs the replacements to fill in the gap of tem-
poral words.

The simple strategy may perform replacements for non-
temporal words even though the processes are unnecessary
for them. However, this strategy has two benefits. First, it
does not require any additional analysis to identify whether
each word is temporal or not. Second, it is beneficial to re-

duce the sparsity of created feature vectors as the replace-
ment should increase the number of words describing events.

Figs. 1, 2, 3 and 4 show the top-5 words for two tem-
poral and two non-temporal nouns from the two example
texts (D1 and D2). These two texts are related to govern-
ment policies for the UK and Japan; therefore, there are two
names of the politicians (May and Abe). Once their terms as
the Prime Minister expire, and different persons contribute
as the Prime Ministers, the two names may not be used in
event description frequently. Thus, once the noun (May) is
replaced with the 5 words displayed in Fig. 1 (postpose,
leaving, defeat, withdrawal and ”form a Government”9) that
represent what the noun tries to accomplish, it is possible to
use words widely appearing in political event descriptions
instead of the temporal words. Fig. 3 also shows similar ef-
fects of the replacement for Abe; it is able to use the 5 words
representing which party he belongs to (Liberal Democratic
Party), which position he is in the party (president), what is
the objective of his policy (deflation and break out) instead
of using the temporal word. Figs. 2 and 4 show the top-5
words for two non-temporal words (council and research).
We can see that there are no temporal words in the top-5s;
therefore, the replacement reduces sparsity without chang-
ing the semantics of the word.

defeat (打開)

May (メイ)

postpone (延期)

withdrawal (離脱)

form a Government(組閣)

leaving (退陣)

10

2

8

4

6

20.010.0 15.05.0 17.57.5 12.52.5

0

-2

-6

-4

Fig. 1 Example top-5 for May. This figure plots top-5s for two nouns
(person and non-named entity).

One possible concern of this replacement is that it is pos-
sible to include temporal words in the top-k such as Tani-
gaki, which is the name of a person, as shown in Fig. 3.
However, the figure shows that the replacement that incor-
porates 4 non-temporal ones that contribute to improvement
share common words with other documents. Indeed, the non-
temporal words should have strong similarity within non-
temporal words as they can be used on all temporal dura-
tions. Although there is a concerning situation, our experi-

9 In Japanese this term can be represented as a word.
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meeting (会合)

council (会議)

forum (フォーラム)

general assembly (総会)

coordinate(取りまとめ)

discuss (話し合う)

10

-10

5

-5

0

252010 155

Fig. 2 Example top-5 for council. This figure plots top-5s for two
nouns (person and non-named entity).

Tanigaki (谷垣)

Abe (安倍)

deflation (デフレ)

Liberal Democratic Party (自民党)break out(脱却)

president(総裁)

10

-10

5

-5

0

20.010.0 15.05.0

15

22.512.5 17.57.5

Fig. 3 Example top-5 for Abe. This figure plots top-5s for two nouns
(person and non-named entity).

science (科学)

research (研究)

society (学会)

professor (教授)

think tank(シンクタンク) laboratory (研究所)

20.010.0 15.05.0 22.512.5 17.57.5

10

-10

5

-5

0

15

-15

25.0

Fig. 4 Example top-5 for research. This figure plots top-5s for two
nouns (person and non-named entity).

mental results show that this type of feature contributes to
improving classification accuracy.

To capture the semantic similarity of words, we perform
word embedding through the Skip-gram model [44–46]. Since
this technique assigns vectors to words so the closer their
meaning, the greater similarity they indicate, we replace all
nouns in documents with their top-k closest words on the

vectors. Algorithm 5 shows how to create this type of feature
vector. After training the Skip-gram model, the proposed
method locates top-k similar words for each noun. It then
replaces the nouns by their top-ks to create TF-IDF vectors
(v5) from the replaced words.

Algorithm 5 Noun-context vector creation
Input: A token list for a document t and a set of token list for all

documents tokens
Output: A noun-context-based feature vec-

tor
1: Function NounContextFeature(tokens, tokens list, k,models)
2: new tokens = []
3: for n ∈ Noun(tokens)
4: new tokens← TopSimWords(n, k, ,modelsw2v)
5: return TFIDFFeature(new tokens, tokens list)

4.1.4 Combining Feature Vectors

Finally, we combine all the feature types and then perform
dimensional reduction to avoid sparsity. Let si be a size of
the ith feature vector. For each document, we create 5 fea-
ture vectors (v1, v2, ..., v5), and then combine them to form
a feature vector; therefore, the size of a combined feature
vector is s1 + s2 + ... + s5. For the combined feature vectors,
we apply a method of dimensional reduction. In this paper,
we train the following three popular methods of dimensional
reduction on labeled data:

1. L1 Norm Regularization (L1): This method trains the
linear model penalized with the L1 norm, and then se-
lects the non-zero coefficients.

2. Random Forests (RFs): This method calculates the im-
portance for each feature and discards irrelevant features
according to the values of importance.

3. PCA: This method decomposes a multivariate dataset in
a set of successive orthogonal components that explain
the maximum amount of variance.

4.2 Classification

In this paper, training classifiers is performed on the results
of combined feature vectors. Since this paper focuses on de-
signing a feature selection method for effective multi-label
event classification, this paper implemented three popular
classifiers: naive bayes (NB), random forests (RFs), and SVMs
with RBF or linear kernels. These classifiers are trained as
one-vs-rest classification.

In addition, this paper trains the following graph-based
classifiers to estimate how well utilizing correlation between
labels works on the proposed feature selection scheme.
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1. Label propagation (LP): LP is a graph-based SSL clas-
sification algorithm [76]. This algorithm employs clus-
ter assumption meaning that similar nodes tend to have
common labels to calculate scores for assigning cate-
gories. This calculation is performed by iteratively mul-
tiplying label scores with similarities between nodes.

2. Dynamic LP (DLP): DLP is an extension of LP to take
label correlation [68].

3. LP through linear neighborhoods (LNP) [69]: LNP is
an extension of the LP algorithm to efficiently construct
graphs by applying KNN to incorporate similarity of lin-
ear neighborhoods into a probability matrix.

4. LP using amendable clamping (LPAC) [47]: LPAC is
an extension of the LP-based algorithm. LPAC is orig-
inally designed for the label completion task of MLC by
emphasizing the cluster assumption; however, this algo-
rithm achieves better than traditional classifiers on a sim-
ple MLC task. We use LPAC as a baseline in this study.

As these classifiers perform SSL, we additionally prepared
9,000 unlabeled news articles from CD-Mainichi Newspa-
pers 2012 data.

5 Experimental Results

5.1 Parameter settings.

In this paper, we set 100 as parameters of LDA, LSA, Doc2Vec
and Word2Vec and 5 as k for creating v5. We use implemen-
tations of LDA, LSA, Doc2Vec and Word2Vec from gen-
sim10.

5.2 Evaluation criteria.

There are several methods to measure MLC performances
from several different points of view. Usually, these perfor-
mances are measured by two kinds of methods: label-based
measures and example-based loss functions [65]. The label-
based measures decompose the evaluation with respect to
each label whereas the example-based loss functions com-
pute the average differences of the actual and the predicted
sets of labels over all examples.

For the label-based measurement, we use micro- and
macro-average precision, recall and F1 score. Formal equa-
tions of micro-average precision, recall and F1 score are de-

10 https://radimrehurek.com/gensim/models/ldamodel.html,
https://radimrehurek.com/gensim/models/lsimodel.html,
https://radimrehurek.com/gensim/models/doc2vec.html and
https://radimrehurek.com/gensim/models/word2vec.html

fined as follows:

miP =
∑

i TPi∑
i(TPi + FPi)

(2)

miR =
∑

i TPi∑
i(TPi + FNi)

(3)

miF1 =
2 miP miR
miP + miR

(4)

where TP, FP and FN are true positive, false positive, and
false negative, respectively. The precision is defined as the
proportion of predicted labels that are truly relevant. The
recall is defined as the proportion of truly relevant labels that
are included in predictions. The trade-off between precision
and recall is formalized by their harmonic mean, called the
F1 score.

These micro-average measurements calculate metrics glob-
ally by counting the total true positives, false negatives and
false positives. In contrast, the macro-average measurements
treat all classes equally; in other words, they compute the
metrics independently for each class and then take the av-
erage. The formal definitions of macro-average precision,
recall and F1 are as follows:

maPi =
TPi

TPi + FPi
(5)

maRi =
TPi

TPi + FNi
(6)

maF1 =

∑
i

2 maPi maRi

maPi + maRi

 / | L | (7)

Further, we use average precision at K (ap@K), which
is one of the most popular metrics in information retrieval.
This metric corresponds to average precision among the top
K documents. The formal equation of average precision is
defined as follows:

Precision(k) =
1
k

k∑
i

ri (8)

AverageP =
1
| Dt |

∑
k<N

rkPrecision(k) (9)

where ri represents whether the prediction is correct or not
by using 1 (correct) or 0 (wrong),Dt is a set of test data and
N is the last rank where a classifier assigns a correct label to
the test data.

In addition, for multi-label accuracy, we use the Jac-
card index-based measurement (MA) and area under the re-
ceiver operating characteristic curve (AUC). The MA mea-
surement calculates a score for the dissimilarity between two
sets by dividing the difference of the sizes of the union and
the intersection of the two sets with the size of the union.
The formal definition is given as follows:

MA =
1
N

N∑
i

|yi ∧ ŷi|
|yi ∨ ŷi|

(10)
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where ŷi is a label predicted by a classifier.
AUC is one of the most important metrics for evaluat-

ing classifier models. This metric measures the area under
the receiver operating characteristics (ROC) curve that rep-
resents the relationship between true positive and false pos-
itive rate.

In the case where we use these metrics, the higher scores
they are, the better the evaluated classifiers are.

As for the example-based loss functions, hamming loss
(HL), ranking loss (RL) and log loss (LL) are popular mea-
surements in MLC. HL calculates the fraction of the wrong
labels to the total number of labels. RL means a proportion
of pairs of labels that are not correctly ordered. Finally, LL
calculates scores from probabilistic confidence. This metric
can be seen as a cross-entropy between the distribution of
the true labels and predictions. Their formal definitions are
given as follows:

HL =
1

NL

N∑
i

L∑
l

[[yi,l , ŷi,l]] (11)

RL =
1
N

N∑
i

∑
y j>yk

([[ŷi < ŷ j]] +
1
2

[[ŷi = ŷ j]]) (12)

LL = −
L∑
i

yi log(pi) (13)

In these measurements, the smaller the scores, the better the
model performances.

We calculate all the above scores by averaging of 5-fold
cross-validation.

5.3 Discussions of Accuracies

In the remainder of this section, we discuss the results of
MLC for past events. First, Section 5.3.1 compares accura-
cies for all dimensional reduction methods to fix methodolo-
gies used in the following discussions. Then, Section 5.3.2
investigates how well the proposed feature vector creation
correctly predicts categories. Section 5.3.3 performs error
analysis to better understand why each classifier performed
mis-predictions. Finally, Section 5.3.4 analyzes which fea-
ture types contribute to the improvement of the proposed
method.

5.3.1 Accuracies of Dimensional Reductions

Q. Which dimensional reduction method was the best
for micro-average F1?
A. The L1-based dimensional reduction method ex-
hibited the best micro-averaging performance for F1.

Table 5 Feature selection accuracies. Micro-average F1 scores of
SVM-Lin. for different feature selection methods. The bold-faced num-
bers indicate the best score for a classifier over the three dimensional
reduction methods.

PCA RFs L1
NB 30.0% 57.1% 60.2%
RFs 28.8% 55.2% 50.3%

SVM-Lin. 56.4% 57.1% 57.2%
SVM-RBF 58.0% 56.8% 56.8%

Tab. 5 shows the micro-average F1 scores of NB, RFs,
SVM-Lin and SVM-RBF, which are trained on feature vec-
tors created by the three different feature selection methods.
We can see that L1-based feature selection for NB obtained
the best score; therefore, we show results of classifiers using
this method in the following section.

5.3.2 Accuracies of Feature Vectors Creations

Q. Which classifier was the best for micro-average F1

scores?
A. The NB equipped with all features demonstrated
the best micro-average F1 scores.

The micro-average F1 scores for all baselines and our
approaches are shown in Tabs. 6 and 7. Initially, we can see
that the combination of all features achieved the best results
for almost all categories as well as for the whole dataset.
Thus, we can conclude that our method is better than the
baselines. In particular, the F1 scores for 6 categories, Cr,
Pr, Rg, Rl, Cn and Tc, were improved more than 5 points
compared with the best results of individual feature groups.
Weaker results for Rg, LT and PM categories were likely due
to the relatively small size of training data compared with
the number of training data for the co-occurring categories
(Cr and Dp) as shown in Fig. 7 and Tab. 2.

To confirm the conclusions, we perform approximate ran-
domization tests [50] for the top-2 baselines (Doc2Vec and
LSA) with All+NB on micro-average F1. The comparison
results (Doc2Vec vs. All+NB and LSA vs. All+NB) showed
0.0310 and 0.0301, respectively, in the case where we re-
peated comparisons 1,000 in the test. Thus, we can claim
that the result of our classifier is statistically significant.

Q. How well did all classifiers perform in other mea-
surements (macro-average F1, MA, average preci-
sion@5, HL, LL, RL and AUC)?
A. For macro-average F1, multi-label accuracy, aver-
age precision@5 and RL, All+NB performed the best.
A. For HL and LL, SVM-RBF was the best.
A. For AUC, SVM-Lin. was the best.

We evaluated two other kinds of accuracies (macro-average
F1 (MF), multi-label accuracy (MA), average precision@5,
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Table 6 miF1 of baselines. Scores for NB and LP-based algorithms obtained when using individual feature groups and TF-IDF, respectively. The
bold-faced numbers indicate the best for a particular term given the metric.

Category TF-IDF (v1) Doc2Vec (v2) LSA (v3) LDA (v4) Noun-context (v5) LP DLP LPAC LNP
Cr 23.4% 64.7% 66.1% 56.1% 69.7% 58.2% 59.7% 70.7% 66.1%
Dp 53.4% 71.6% 60.5% 65.6% 73.8% 59.9% 64.1% 71.2% 67.7%
Pr 0.0% 53.4% 45.0% 31.4% 38.9% 39.2% 41.8% 45.9% 46.0%
Rg 0.0% 20.1% 13.1% 4.8% 7.6% 23.9% 26.0% 26.4% 27.8%
En 1.9% 46.8% 41.3% 29.7% 5.5% 26.2% 35.8% 59.6% 45.5%
Rl 0.0% 50.1% 40.0% 44.5% 26.0% 20.6% 22.4% 53.7% 43.5%
Ds 8.8% 60.4% 60.1% 24.9% 28.6% 32.5% 22.4% 35.6% 47.2%
St 6.4% 36.6% 50.0% 19.7% 13.5% 23.8% 22.4% 33.3% 42.3%
Cn 0.0% 31.0% 31.0% 15.8% 27.5% 35.0% 31.1% 45.2% 44.3%
LT 0.0% 36.2% 48.1% 22.8% 25.3% 22.1% 16.8% 0.0% 19.5%
PM 0.0% 38.5% 35.7% 12.8% 0.0% 21.1% 29.4% 53.3% 40.1%
Tc 2.5% 52.5% 45.3% 36.8% 14.9% 29.8% 31.1% 42.1% 43.9%
Wr 0.0% 53.2% 35.9% 48.2% 14.8% 23.8% 29.4% 44.1% 40.4%

Total 16.5% 52.9% 50.1% 40.8% 43.1% 33.4% 34.5% 48.9% 48.4%

Table 7 miF1 of proposed methods. Scores when using all features used together for NB, RFs, SVM and LP-based algorithms settings for each
class. The bold-faced numbers indicate the best for a particular term given the metric.

Category All+NB All+RFs All+SVM-RBF All+SVM-Lin. All+LP All+DLP All+LPAC All+LNP
Cr 75.8% 69.9% 73.0% 71.4% 65.1% 58.2% 64.9% 60.6%
Dp 75.8% 69.6% 78.0% 76.4% 73.8% 59.9% 74.1% 69.2%
Pr 60.6% 49.0% 39.3% 36.2% 52.4% 39.2% 51.7% 50.3%
Rg 31.3% 22.1% 4.4% 0.0% 26.2% 23.9% 26.0% 26.2%
En 54.4% 25.2% 58.4% 59.7% 30.3% 26.2% 30.3% 37.8%
Rl 60.1% 57.1% 52.1% 35.3% 59.5% 20.6% 59.5% 55.8%
Ds 57.4% 45.1% 56.6% 52.1% 46.9% 32.5% 46.9% 44.9%
St 52.8% 41.5% 53.4% 52.7% 38.9% 23.8% 38.9% 41.4%
Cn 57.3% 33.0% 34.6% 30.7% 35.7% 35.0% 37.7% 38.0%
LT 39.5% 18.8% 31.6% 15.9% 16.6% 22.1% 16.6% 20.3%
PM 42.4% 24.3% 17.7% 19.2% 40.2% 21.1% 40.2% 40.5%
Tc 58.6% 34.1% 50.0% 35.6% 40.1% 29.8% 40.1% 38.7%
Wr 54.8% 35.0% 35.5% 26.7% 50.7% 23.8% 50.4% 41.6%

Total 60.2% 50.3% 56.8% 57.2% 52.6% 33.4% 52.5% 49.3%

three loss functions (HL, LL and RL) and AUC in Tab. 8.
Similar to the results of micro-average F1, we can see that
combining all feature vectors improved the scores and gen-
erated the best outcomes. In particular, all the best scores
were generated from the combined all feature vectors by
All+NB for MF, MA and RL, All+SVM-RBF for average
precision@5, HL and LL or All+SVM-Lin. for AUC.

From the above results, we can conclude that combin-
ing all the features improves scores for all the categories.
However, the results also showed that two classifiers NB and
SVM-RBF achieved the best scores in many measurements.
To better understand the differences between the two classi-
fiers, we focus on the two classifiers in the remainder of this
experimental evaluations.

Q. Which was better, All+NB or All+SVM-RBF?
A. All+NB was better overall because All+NB’s
micro-average recall and F1 were on average ap-
proximately 30% and 10% higher than the values of
All+SVM-RBF. However, comparing micro-average
precision scores, All+SVM-RBF was better than
All+NB approximately by 10%.

Figs. 5 and 6 show micro-average precisions and recalls
as well as F1 scores for All+NB and All+SVM-RBF. Look-
ing at All+NB’s result, this classifier achieved over 70%
scores in recall for 8 categories: Cr, Dp, Pr, En, Rl, St, Tc
and Wr. On the other hand, there are only 2 categories Cr and
Dp in which the classifier achieved over 70% scores in pre-
cision and F1-score. Looking at results of All+SVM-RBF,
this classifier obtained high precision scores in 4 categories:
Cr, Dp, Rl and Ds. However, its recall scores tended to be
low excluding Cr and Dp. If improving precision or reduc-
ing the loss scores is important, SVM-RBF may be a good
classifier instead of NB.
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Table 8 Label- and Example-based Results without micro-average
F1. Scores of macro-average F1 (MF), multi-label accuracy, (MA), av-
erage precision@5 (ap@5), hamming loss (HL), log loss (LL), ranking
loss (RL) and AUC.

MF MA ap@5 HL LL RL AUC
TF-IDF (v1) 7.4% 9.2% 41.7% 0.185 31.589 0.326 0.510

Doc2Vec (v2) 47.3% 38.4% 40.9% 0.274 10.668 0.258 0.512
LSA (v3) 43.9% 34.9% 41.0% 0.154 8.177 0.145 0.520
LDA (v4) 31.8% 26.7% 37.8% 0.168 6.821 0.187 0.508

Noun-context (v5) 26.6% 28.9% 39.3% 0.174 44.741 0.212 0.526
LP 32.0% 20.1% 28.6% 0.799 6.450 0.373 0.518

DLP 33.3% 20.9% 28.6% 0.791 6.705 0.361 0.500
LPAC 44.7% 33.4% 40.4% 0.343 6.354 0.176 0.510
LNP 46.7% 35.1% 26.4% 0.320 17.889 0.314 0.500

All+NB 55.4% 45.8% 42.5% 0.191 9.314 0.138 0.519
All+RFs 40.3% 35.6% 40.1% 0.171 10.565 0.242 0.528

All+SVM-RBF 45.0% 43.1% 42.4% 0.145 5.292 0.143 0.530
All+SVM-Lin. 39.4% 38.5% 41.1% 0.154 5.514 0.162 0.534

All+LP 44.5% 34.2% 38.8% 0.189 5.674 0.152 0.518
All+DLP 32.0% 20.1% 28.0% 0.799 6.523 0.386 0.500

All+LPAC 44.4% 34.1% 33.3% 0.190 5.612 0.151 0.510
All+LNP 43.5% 31.0% 28.8% 0.209 23.178 0.540 0.500
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Fig. 5 Micro-average precision, recall and F1 scores for All+NB.
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Fig. 6 Micro-average precision, recall and F1 scores for All+SVM-
RBF

Comparing the two classifiers, we can say that All+NB
is better than All+SVM-RBF because All+NB’s micro-average
recall and F1 were on average approximately 30% and 10%
higher than the corresponding All+SVM-RBF values.

To confirm these conclusions, we performed approxi-
mate randomization tests for the two classifiers on micro-

average F1. The result showed 0.0213 in the case where
the comparison test was repeated 1,000 times. Thus, we can
claim that All+NB is statistically significant from All+SVM-
RBF.

5.3.3 Error Analysis

Q. Why was the result of Rg weak for all classifiers?
A. Events of the category tend to co-occur with other
categories (Cr and Dp) where the numbers of train-
ing data for the co-occurring categories were approx-
imately twice those of the Rg category.

To better understand the reasons why the Rg category
was weak result in Tab. 7, we plot the number of co-occurring
category pairs in Fig 7, which clearly that Cr and Dp are of-
ten used with Rg. However, the numbers of training data of
Cr and Dp were approximately twise those of Rg as shown
in Tab. 3; therefore, the small size of training data can be
considered the reason for weak results for the Rg category.
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Fig. 7 Co-occurrences of labels.

Q. How and why did ALL+NB incorrectly predict re-
sults?
Q. How and why did ALL+NB perform missing cor-
rect label assignments?
A. The Pr and St categories were often wrongly as-
signed to each other.
A. If several categories such as Cn, PM and Ds co-
occurred together on the same events, the categories
tended to be wrongly assigned to each other.

We next analyzed how and why our classifier performed
mis-predictions. In particular, we analyze 1) what categories
ALL+NB wrongly assigned data to and 2) what suitable cat-
egories the classifier did not assign data to. Fig. 8 shows the
categories that were incorrectly assigned to events. We can
see that several Ds (Disparity) events were assigned to the
Rg (Reign), Cn (Community), PM (Popular Movement) and
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Fig. 8 Wrongly assigned categories by NB. The x axis represents
categories that were wrongly assigned to events of y axis’s categories.

Wr (War) categories. One possible reason for assigning Cn
or PM is that Ds category has a high co-occurrences with the
two categories as shown in Fig. 7. The three categories of
events, Wr, Rg and Ds, often refer to locations, which can be
a reason for wrongly assigning Wr or Rg to Ds events. For ex-
ample, an event text what economic or political policy issues
may trigger for causing economic disparity on a specific lo-
cation can be seen as a disparity-related event. As for both
Wr- and Rg-related events, a text which countries began to
invade to another country can belong to the categories.

We also observe that several Pr (Production) events were
wrongly assigned to the Ds or St (Study) categories. First,
it is relevant that there is a strong relationship between Pr
and St since many production events can be results of study
events. Also, these two category events may generate dis-
parity; thus, these wrong assignments can be considerable.

We can see that Dp (Diplomacy) was often incorrectly
assigned to Pr, Ds, St or Tc (Technology) events. Dp events
include negotiation such as the Trans-Pacific Partnership Agree-
ment which is a trade agreement involving several products;
therefore, the classifier wrongly assigned Dp to Pr. The same
reason can be considered for reasons of assigning the cate-
gory to St and Tc because it is possible to regard outputs of
these two categories as productions. Next, looking at Fig. 7,
we can see that some events commonly can have Dp and Pr;
it is a possible reason for the mis-prediction.

Fig. 9 shows the number of categories that are attached
in the test data for which no classifiers were assigned. We
can see that several test data that were attached to two cat-
egories such as Cr (commerce) and Dp were often assigned
to only one of them. Similarly, the Pr category also missed
Cr events.
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Fig. 9 Missed categories by NB. The x axis represents categories that
were correct but were not assigned to events of y axis’s categories.

Q. Were there dependencies between different cate-
gories?
A. Regarding mutual information measurements,
there were strong dependencies between 3 categories,
Tc, LT and PM.
A. Regarding Euclidean distance measurements,
events of Cr, Dp and Pr or PM, Tc and Wr were similar
to each other within the 3 categories.

We then calculated scores of the mutual information (MI)
that represent dependencies between categories. The formal
definition of MI is as follows:

MI(X′1, X
′
2) =

∑
x1∈X′1

∑
x2∈X′2

p(x1, x2) log
(

p(x1, x2)
p(x1)p(x2)

)
(14)

Fig. 10 plots the obtained MI values between the cate-
gories. We can see that there are strong dependencies among
categories Tc, LT (Literature and Thought) and PM. This
result is considerable because some technologies can affect
our social life. For example, IT items, such as personal com-
puter, can change our work styles in ways like office or re-
mote working. The items also have potential of creating move-
ments such as affecting the work style not only for specific
persons/organizations but also for societies.

In addition, we measure similarities between different
categories by Euclidean distance. The lower the score of the
distance between two feature vectors is, the more similar
they are. We calculate the distances for all combinations of
feature vectors of 2 categories and plot them in Fig. 11. The
scores among 3 categories of Cr, Dp and Pr were low. This
is because the 3 categories tend to be assigned to the same
feature vectors as shown in Fig. 7. Another observation is
that there were relatively strong dependencies among the 3
categories PM, Tc and Wr. Similar to the relationship between
LT, PM and Tc, technology can have strong relationships with
PM and Wr related events.
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Fig. 10 Inter-category dependency. MI of feature vectors between
different categories.
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Fig. 11 Inter-category similarity. Euclidean distances between dif-
ferent categories.

Q. Were there dependencies between feature vectors
in the same category?
A. The Pr, St and LT categories have strong event
dependencies.

We next investigate the dependencies of feature vectors
by MI in the same category. Tab. 9 shows the scores of 3 cat-
egories St, LT and Tc have relatively strong dependencies
between feature vectors in their categories compared with
other categories. In addition, we apply Euclidean distances
to measure the inner-category similarity. Interestingly, fea-
ture vectors of Tc are relatively similar to each other since its
score is low. This result indicates that this category’s events
describe similar topics or use the same words.

Table 9 Inner-category dependency and similarity. MI scores and
Euclidean distances of feature vectors in the same categories.

Category MI Euc. Dist. Category MI Euc. Dist.
Cr 0.751 4.275 St 0.780 4.972
Dp 0.739 4.167 Cn 0.731 5.162
Pr 0.756 4.061 LT 0.784 5.445
Rg 0.750 5.002 PM 0.764 4.611
En 0.774 4.591 Tc 0.782 4.394
Rl 0.758 4.908 Wr 0.758 4.025
Ds 0.766 5.430 Ave. 0.761 4.69

5.3.4 Analyzing Importance of Feature Vectors

Q. How was each feature important in this study?
Q. How well were scores of micro-average F1 for NB
and SVM-RBF equipped with the important features?
A. The Noun-context-based feature was the most used
feature type to create vectors.
A. Doc2Vec’s importance score was the highest of all
feature type.
A. The Noun-context + SVM-RBF had better scores
for En than ALL+NB although the total score of
Noun-context + SVM-RBF was weaker than that of
ALL+NB.

Fig. 12 shows ratios of the numbers of feature types used
in the result of applying the proposed method. We can see
that the noun-context type is the most used feature type. This
feature type occupies approximately 45% of the combined
feature vector.

In Fig. 13 we show the average importance values (blue
bars) and standard deviations (black lines) of our features.
We can see that the Doc2Vec and other semantic-based fea-
tures were the most important in event MLC. The noun-
context feature is the lowest in this figure.

26.9%

26.3%

1.2%

Noun-context

d2v

lsa

tf-idf

lda

44.2%

1.5%

Fig. 12 Ratio of important feature vectors.

Tabs. 10 and 11 show scores of six measurements (micro-
and macro-average F1, multi-label accuracy, hamming loss,
log loss and ranking loss) for NB and SVM-RBF equipped
with Doc2Vec and Noun-context-based feature vectors. Look-
ing at the result of SVM-RBF’s micro-average F1, total scores
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Fig. 13 Feature importances.

Table 10 Micro-average F1 scores for the top important feature.
F1 scores for NB obtained when using d2v and Noun-context settings
for each class.

All+NB All+SVM-RBF
Category Doc2Vec Noun-context Doc2Vec Noun-context
Cr 64.7% 69.7% 24.0% 44.2%
Dp 71.6% 73.8% 20.8% 52.0%
Pr 53.4% 38.9% 0.0% 3.2%
Rg 20.1% 7.6% 0.0% 0.0%
En 46.8% 5.5% 30.0% 49.1%
Rl 50.1% 26.0% 10.3% 30.3%
Ds 60.4% 28.6% 26.7% 22.5%
St 36.6% 13.5% 14.7% 19.2%
Cn 31.0% 27.5% 0.0% 8.3%
LT 36.2% 25.3% 2.9% 4.0%
PM 38.5% 0.0% 5.7% 11.9%
Tc 52.5% 14.9% 6.3% 18.8%
Wr 53.2% 14.8% 4.7% 14.5%

Total 52.9% 43.1% 15.4% 30.4%

Table 11 Scores for the top important feature. Scores of macro-
average F1 (MF), multi-label accuracy (MA), hamming loss (HL), log
loss (LL), ranking loss (RL) for NB and SVM-RBF

.

MF MA HL LL RL

NB Doc2Vec 47.3% 38.4% 0.274 10.668 0.258
Noun-context 26.6% 28.9% 0.174 44.741 0.212

SVM-RBF Doc2Vec 11.2% 9.3% 0.185 5.333 0.148
Noun-context 21.4% 18.5% 0.167 5.084 0.133

were weaker than the ones of All+NB; however, there was a
category (En) where SVM-RBF was better than ALL+NB.
In addition, three loss scores for SVM-RBF were better than
the ones for NB. On the other hand, comparing results of
Doc2Vec and Noun-context-based feature vectors for NB,
the scores of Doc2Vec were better than ones for the other
more than 10% for 10 categories: Pr, Rg, En, Rl, Ds, St, LT,
PM, Tc and Wr. One possible reason for the difference was
the sizes of the feature vectors since the Noun-context-based
feature type uses all words to create the feature vector. The
sizes of Doc2Vec and Noun-context feature types are 100
and 24,594, respectively.

Q. How well did combinations of feature vectors im-
prove micro-average F1 scores?
A. Adding Doc2Vec to noun-context resulted in the
most improvement. Adding other feature types with
dimensional reduction also improved the score by ap-
proximately 1%.
A. Applying the dimensional reduction method was
important as combining feature types without the
method resulted in lower scores than the case where
the method was used. In particular, adding TF-IDF
without the method reduced the score.

We then investigate which features truly contribute to
improving the micro-average F1 scores. We incrementally
combined Noun-context-based feature vectors with Doc2Vec,
LSA, LDA and TF-IDF in descending order of numbers of
used feature type in combined all feature types and results
are contained in Tab. 12. The simple column means that we
combine feature vectors without applying dimensional re-
duction methods and train NB on them whereas the dimen-
sional reduction column lists the score for NB trained on the
results of applying L1 dimensional reduction. The dimen-
sional reduction column indicates that it is able to linearly
improve accuracy by combining feature vectors with apply-
ing a dimensional reduction. The simple column also shows
that adding feature types makes the improvement excluding
TF-IDF.

Table 12 Feature Combinations. Micro-average F1 scores for NB
equipped with incrementally added feature vectors.

Simple Dimensional Reduction
v5 43.1 % 54.2%
v5 + v2 44.4% 57.5%
v5 + v2 + v3 45.0% 58.8%
v5 + v2 + v3 + v4 45.0% 59.1%

All 36.5% 60.2%

6 Conclusions

Understanding categories of events can have many applica-
tions including support for building historical analogy mod-
els, across-time connection of events/entities, or structuring
longer text collections such as Wikipedia (e.g., year related
articles). In this paper we introduce a classification tech-
nique for multi-labeled documents of events. We showed
that our technique could improve micro-average F1 scores
by approximately 10%. For this evaluation, we created a new
ground truth dataset, and have made it available on a public
repository.

Future work will (a) investigate a novel feature selec-
tion algorithm that is robust for training data. It is consid-
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erable that the feature selection process also utilizes corre-
lations; however, one of the trends in multi-label classifica-
tion (MLC) studies is how to train classifier on an incom-
plete dataset whose labeled data have wrongly assigned cat-
egories or missed suitable ones. This trend indicates that it is
problematic for feature selection to simply use the correla-
tion that leads to incorporating the wrong correlation. One of
the solutions is to find implicit semantic intermediate labels
from feature vectors; however, this is essentially classifica-
tion. Thus, although it might be possible to incorporate the
findings of implicit semantics to feature vectors, it might not
be straightforward. We believe that this study can be useful
as a baseline to facilitate designing the novel feature selec-
tion method. We also plan to (b) propose a novel and effec-
tive learning system specialized to history. This system will
bridge past and present events by estimating how well each
event is relevant to event categories.
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