
Noname manuscript No.
(will be inserted by the editor)

Multilabel Graph-based Classification for Missing Labels

Yasunobu Sumikawa · Tatsurou Miyazaki

Received: date / Accepted: date

Abstract Assigning several labels to digital data is becom-
ing easier as this can be achieved in a collaborative man-
ner with Internet users. However, this process is still a chal-
lenge, especially in cases where several labels are assigned
to each datum, as some suitable labels may be missed. The
missing labels lead to inaccuracies in classification. In this
study, we propose a novel graph-based multi-label classi-
fier that exhibits stability for obtaining high-accuracy re-
sults; this is achieved even where there are missing labels
in training data. The core process of our algorithm is to
smoothen the label values of the training data from their
top-k similar data by propagating their values and averag-
ing them to generate values for the missing labels in the
training data. In experimental evaluations, we used multi-
labeled document and image datasets to evaluate classifiers,
and then measured micro-averaged F-scores for eight clas-
sifiers. Even though we incrementally removed correct la-
bels from the two datasets, the proposed algorithm tended to
maintain the F-scores, whereas other classifiers decreased
the scores. In addition, we evaluated the algorithm using
Wikipedia, which comprises a real dataset that includes miss-
ing labels, in order to determine how well the algorithm
predicted the correct labels and how useful it was for man-
ual annotations, as initial decisions. We have confirmed that
LPAC is useful for not only automatic annotation, but also
the facilitation of decision making in the initial manual cat-
egory assignment.
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1 Introduction

Thanks to the growing size of the Web and digital archiv-
ing technology, we can now access numerous digital docu-
ments, images, and other types of data. This situation is good
for enhancing our experiences of using the Web; for exam-
ple, it is easy to study the history of any country, to find big
pictures about relationships between people, and so on. On
the other hand, it is becoming increasingly demanding to
organize digital data to access them quickly. Defining cat-
egories and dividing digital data into these categories play
key roles in digital data organization. For example, the cat-
egorization of digital documents is useful for constructing
thematic timelines or event lists.

As the amount of data increases, the categorization schemes
dynamically change due to the revision of the hierarchical
structure and the definition of new categories. When these
categorization schemes change, it is necessary to re-assign
categories to existing data, which requires a huge cost in
manual work. For example, in Wikipedia, there are numer-
ous articles and categories. These data are organized by Wik-
ipedia editors who are able not only to edit them, but also
to add new articles and categories using the discussions on
them. Thus, when some Wikipedia categories are updated,
some articles can be assigned new categories. As another
example, if it is necessary to create a new dataset from com-
bining several existing datasets such as the New York Times
and Japan Times, it is sometimes required to define new cat-
egory schemes and assign them to their data.

The increasing number of Internet users makes annota-
tions easier because many people can work on such tasks
in parallel following the same policies used on sites, e.g.,
editing Wikipedia. Nevertheless, this task is still quite chal-
lenging. For example, some Wikipedia articles report several



2 Yasunobu Sumikawa, Tatsurou Miyazaki

0 102 4 6 8

SVM
Random forest
Label propagation

0.0

1.0

0.2

0.4

0.6

0.8

Fig. 1 Effect of missing labels in multi-label classification. x- and y-
axes represent number of missing labels and micro-averaged F-scores
of SVM, RF, and LP, respectively.

types of natural disasters1. In this category, there are two
sub-categories: Avalanches and Earthquakes. Many arti-
cles in the Avalanches category have the Natural disasters
category, whereas few articles in the Earthquakes have it.
Thus, even though these articles report the same topic, the
attached categories are not the same.

The missing labels is a very serious issue with respect to
obtaining good classifier accuracy because almost all of the
classifiers assume that labeled data prepared by people are
correct. Fig. 1 shows how missing labels worsen the accura-
cies of support vector machine (SVM), random forest (RF),
and label propagation (LP) on a multi-label dataset called
the SIAM 2007 Text Mining Competition dataset2, whose
documents are assigned 3.4 labels on average. We can see
that if only one label is missing, all their micro-averaged
F-scores worsen by about 5%. If more than two labels are
missing, the scores can decrease by about 10%.

Contributions: In this study, we propose a novel graph-
based algorithm for multi-label classification (MLC) that
is named LP using amendable clamping (LPAC). The core
contribution of this study is to make label values for missing
labels in labeled data. For this purpose, LPAC effectively
utilizes cluster assumption [31], which implies that simi-
lar nodes tend to have common labels, by propagating la-
bel values of top similar data, called local-propagation, and
updating scores of the labeled data by averaging from the
top similar data, called dynamic clamping. These two pro-
cesses add the values of the missing labels from their similar
data. There are past works proposing LP-based algorithms
that enhance the cluster assumptions. However, their objec-
tives are different from that of these studies; for example,
using the assumption for constructing graphs [28] and train-
ing kernel [5].

1 https://en.wikipedia.org/wiki/Category:Natural_disasters_by_
country

2 https://catalog.data.gov/dataset/
siam-2007-text-mining-competition-dataset

We evaluated LPAC by using three types of datasets:
SIAM 2007 TextMining Competition dataset, digital images,
and Wikipedia articles. We used the former two datasets to
evaluate the accuracy in the term of stability for LPAC out-
puts with reducing the number of the correct labels. We in-
crementally removed correct labels of the two datasets and
trained all classifiers on them. We confirmed that LPAC is
more stable in terms of micro-averaged F-score than base-
lines. Next, in the third experimental evaluation, we trained
the classifiers on Wikipedia articles and confirmed that LPAC
is the best algorithm in terms of micro-averaged F-score and
is useful for manual annotations as initial decisions.

The contributions of this study can be summarized as
follows:

1. We proposed a novel LP-based algorithm using local-
propagation and dynamic clamping for smoothing the
effects of missing labels.

2. We performed quantitative evaluations on document clas-
sification by reducing correct labels, and confirmed that
our algorithm is the best compared with widely used
classifiers and other LP-based algorithms that dynami-
cally propagate label values.

3. We also evaluated our algorithm on image classification
and confirmed that our algorithm is the best as well in
document classification.

4. We applied our algorithm to Wikipedia articles with sev-
eral missing suitable Wikipedia categories. Our algorithm
achieved the best results and will be useful for manual
annotations as initial decisions.

Problem Statement. Let L be a finite and non-empty
set of labels {l1, l2, ..., lm}. Let X and Y be the input and out-
put spaces, respectively. Given a dataset D = (Dl,Du,Dt)
that includes labeled data Dl = {(xi,yi)}Pi=1 ⊂ X × Y, yi ∈

{0, 1}m and unlabeled data Du = {xi}
Q
i=P+1 ⊂ X, MLC pre-

dicts labels ŷ = {yk | 1 ≤ k ≤ m} for test data Dt =

{xi}
R
i=Q+1 ⊂ X. In this study, we define two labeled datasets

Dl
comp andDl

missed that are completely and partially assigned
suitable labels, respectively. In other words, for all i ∈ [1, P],
xi = x′

i and |yi| ≥ |y
′
i| where yi ∈ D

l
comp and y′

i ∈ D
l
missed.

In this work, it is assumed that classifiers are trained on
Dl

missed andDu.

Outline. The remainder of this paper is organized as fol-
lows: Sec. 2 provides summaries of several related works.
We describe the fundamental algorithm of LP in Sec. 3 and
extend this algorithm to LPAC in Sec. 4. Sec. 5 performs
evaluations on document and image classification, and qual-
itative analysis for Wikipedia articles. Sec. 6 concludes the
remarks.
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2 Related Works

In this paper, we first summarize classification studies in
Sec. 2.1, to give a big picture of the classification problem.
As LPAC is a semi-supervised learning (SSL) graph-based
approach, we next summarize the SSL classification (Sec.
2.2) and previous graph-based studies (Sec. 2.3). Finally, in
Sec. 2.4, we summarize event classification studies as we
evaluate LPAC using events in Sec. 5.2.3.

2.1 Single- and Multi-label Classification

Single-label classification studies constitute the most impor-
tant studies in classification research because many algo-
rithms proposed as MLC and SSL are based on single-label
classification. A special case of single-label classification is
binary classification, that assigns one of two categories to
each datum. RF and SVM are popular algorithms that per-
form binary classification. If there are two or more cate-
gories, and we apply classifiers to evaluate categories as one
vs. the rest, then the classification problem can be extended
from binary classification to multi-class classification that
assigns a label to data from the categories. These studies
play key roles in natural language processing (NLP), infor-
mation retrieval (IR), machine learning (ML), and other re-
search fields. Therefore, several researchers have published
survey papers [1,3,21,23].

An extension of single-label classification to assign one
or more categories to a datum is called MLC. Based on
the manner of approach, MLC algorithms can be divided
into two: transformation and algorithm adaptation [26]. The
transformation approach transforms data into a form that
can be applied to traditional single-label classifiers. This ap-
proach independently trains several classifiers for each la-
bel and predicts labels by combining [6] or chaining [22]
the classifiers. As a type of the transformation approach,
the label powerset is a popular MLC approach. This ap-
proach transforms the label representation to apply multi-
class classifiers after creating all combinations of the labels.
On the other hand, the algorithm adaptation extends an exist-
ing single-label classifier to treat multi-label data. MLkNN
is one of the most well-known algorithms using this ap-
proach [30]. These two types of approaches can be used
as ensemble style approaches, such as random k-labelsets
(RAKEL) [13] and ensembles of classifier chains [22], that
combine results from several classifiers based on the trans-
formation and algorithm adaptation approaches. Usually, a
voting scheme where every category is predicted by taking
the probability of votes from individual classifiers [14] is
employed to combine the results. Frameworks of MLC stud-
ies are also presented as survey papers [3,21,29], as well as
those of single-label classifications.

2.2 Semi-supervised Learning Style Classification

It is important to prepare high-quality labeled datasets to
train both single- and multi-label classifiers. However, the
preparation is usually costly; in many real applications, the
available labeled data are scarce and assigning suitable la-
bels to unlabeled data is time-consuming. If we can obtain
numerous unlabeled data, SSL-style classification is useful
to reduce the cost of preparing labeled data, because this ap-
proach incrementally adds labeled data from unlabeled ones
by applying classifiers trained on labeled data and retraining
the classifiers on the new labeled data, including the results
of the classifiers [4].

One of the most popular implementations of the SSL
classification is to use single- and multi-label classifiers with
the expectation-maximization (EM) algorithm to train the
classifiers [7,8,18]. The detail is given by survey papers [20,
33]. Like in the SSL case, Kong et. al. proposed a transduc-
tive algorithm that solves an optimization problem to esti-
mate label concept compositions, by utilizing information
from both labeled and unlabeled data [10]. In a related study,
Chapelle et. al. proposed kernel training for SSL-style clas-
sification by cluster assumption [5]. Zhou et al. proposed an
algorithm that constructs a smooth function taking care of
the intrinsic structure revealed by known labeled and unla-
beled data [31].

2.3 Graph-based Classification

LP has been proposed as SSL classification in [32]. This al-
gorithm spreads labels from a small-sized labeled data for
unlabeled data. This is done by using a graph whose nodes
and edges represent labeled and unlabeled data, and their
similarities, respectively. This algorithm is based on two fun-
damental assumptions. First, the initial values of the labeled
data should be kept during the spread from the unlabeled
data. Second, similar data should tend to have the same la-
bel.

The original algorithm is designed for single-label clas-
sification, especially for the multi-class classification. How-
ever, this algorithm has been extended to MLC to take care
of several issues associated with conventional MLC; for ex-
ample, taking label correlation [9,27] as detailed in the sur-
vey paper [35].

Kang et. al. exploited the correlation between labels on
the assumption that labels in multi-label classification are
often correlated respectively [9]. Wang and Tsotsos proposed
the DLP [27] that performs label fusion and diffusion to take
label correlations while propagating label values, in order to
extend the traditional single-labeled LP to multi-labeled LP.
The label fusion assumes that two data points with highly
correlated label vectors tend to have high similarities in the
input data space. To preserve the intrinsic structure of the
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input data during the label fusion process, DLP uses KNN.
The label diffusion emphasizes the intrinsic structure be-
tween all the input data, using the KNN matrix. Wang and
Zhang [28] proposed the LNP that efficiently constructs graphs
to perform graph-based SSL classifications. LNP applies KNN
to incorporate similarity into a probability matrix during the
graph construction phase. The DLP and LNP are related to
this study. The reason is that DLP performs dynamic label
propagation by label fusion that utilizes label values from
top-k, whereas, LNP propagates label values from the la-
beled data and their neighborhoods. On the other hand, our
proposed algorithm performs dynamic clamping by incorpo-
rating label values of top-k similar data calculated by KNN.

The aforementioned studies utilize cluster assumptions
to extend domains of the initial algorithm of the LP while
respecting the first assumption (the values of the initial la-
beled data should not be affected by the spread from the un-
labeled data). This assumption should be kept if there are
no missing labels in the training data; in other words, it is
fine if the classifiers are trained onDl

comp. However, if there
are missing labels in the training data, the assumption is no
longer valid, because classifiers regard data without labels
as not representative of the labels. Thus, in this study, we
tackle this problem to improve the soundness of the assump-
tion; in other words, our proposed algorithm is designed to
be trained onDl

missed.

2.4 Event Classification

Event classification is becoming a popular research topic,
especially over the last decade. Kosmerlj et al. proposed
event categories that were originally defined by Wikipedia
editors [11]. They then use TF-IDF trained from news arti-
cles to classify the news into the event categories. This study
trains a classifier on the whole text of the news articles; how-
ever, several events can be mentioned with a few sentences,
such as news articles containing references to related events,
historical accounts or biographies. To classify the past event
described with short texts, Sumikawa and Jatowt proposed
a feature selection method [25]. This study assumed each
event to have only one label defined in the Wikipedia Cur-
rent portal; thus, this study is designed as a single-label clas-
sification.

The main differences between this study and previous
event classifications lie in the availability or non-availability
of SSL classifiers and whether or not, missing labels are as-
sumed. The previous studies are designed as non-SSL clas-
sifiers and have no missing labels in their training data; thus,
their objectives are different from those of this study.

Algorithm 1 Traditional LP
1: Construct a probabilistic transition matrix P.
2: Let Y0 = [Y l

0 : 0]
3: for t = 1 to T − 1 do
4: Yt+1 = P · Yt
5: Y l

t+1 = Y l
0

6: end for
7: return Yt

3 Traditional LP

In this section, we describe the well-known LP algorithm
[32]. We first present a formal definition of a graph G =

(N, E), as LP invokes classification on a graph. For each data
x ∈ X, a node n ∈ N is created. Then, a positive value wi, j

is assigned to an edge (ni, n j) ∈ E as a weight between xi

and x j where xi,xj ∈ X. The value of wi, j is determined as
follows:

wi, j = exp(−
‖vi − v j‖

2

α2 ) (1)

where vi is a vector of xi and α is a hyper-parameter.
Because a graph can be represented as a matrix, LP is

usually invoked by multiplying a probabilistic transition ma-
trix P by a label matrix Y to propagate labels. The proba-
bilistic transition matrix P represents the probability of tran-
sition from ni to n j, and is defined by normalizing the simi-
larity metrics as follows:

P(i, j) =
wi, j∑n

k=1 wi,k
(2)

The label matrix Y is defined as [Y l : Yu] ∈ R|D|×|C|,
where | D | is the number of data, | C | is the number of
categories, Y l is the label matrix for labeled data, and Yu is
the label matrix for unlabeled data. The value of Y l(i, c) is 1
if xi’s categories include c; otherwise, it is 0.

Algorithm 1 shows the entire algorithm of LP. First, the
two initial matrices, P and Y , are constructed. Then, they
are multiplied repeatedly until all elements are fixed, or the
iterative process converges to a certain number. During the
iteration, values of Y l are reset by assigning their initial val-
ues (Y l

0) before invoking the next iteration. This is known as
clamping. This assigning process removes any effects of the
propagating labels for all labeled data in order to propagate
the same values for all the iterations.

4 LP using Amendable Clamping

We extend the traditional LP to create propagation of miss-
ing labels by adding the following two steps:

1. Local-propagation: Enhancing the propagation of label
values of similar data.

2. Dynamic clamping: Updating Y l from labels of similar
data.
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Fig. 2 Example of local-propagation. Red arrows represent local-
propagation; LPAC additionally propagates the weights of the top-k
data. Blue arrows represent propagations used in traditional LP.

In this algorithm, we assume that there are no labels
wrongly assigned to training data. Thus, in the training data
there are missing labels, while all the attached labels are cor-
rect.

4.1 Local-propagation

The objective of the first extension is to emphasize the clus-
ter assumption in the label propagation phase. Fig. 2 presents
an example to provide an intuitive understanding of the local-
propagation process. Circles represent the nodes of the graph.
Blue and red circles indicate that they are labeled data whereas
green ones are unlabeled data. In this example, we focus on
the green node ni within five blue nodes and one green node
in the orange circle and, put them close to each other to ease
the presentation. Arrows represent flows of the propagating
label weights. The blue arrows represent the flows for all
nodes, whereas the red arrows represent flows for only top-k
similar nodes. The traditional algorithm performs the prop-
agation shown with the blue arrows only. LPAC propagates
not only the values represented by the blue arrows, but also
those represented by red arrows.

For this local-propagation, we add (M · P) · Yt to the ma-
trix multiplication in the traditional algorithm where M ∈

N|N |×|N | is a matrix representing the KNN of the data; Mi j

is 1 if the ith data is in the top-k similar ones of the jth
data; otherwise, it is 0. As M · P allows the propagation of
label values only for top-k similar data, we call this proce-
dure local-propagation. In contrast, we call P · Yt, which is
used in traditional LP, global-propagation. To adjust the bal-
ance between local- and global-propagations, we introduce
a hyper-parameter β as follows:

Propt = βP · Yt + (1 − β)(M · P) · Yt (3)

Algorithm 2 LP using amendable clamping
1: Construct a probabilistic transition matrix P and a KNN matrix M.
2: Let Y0 = [Y l

0 : 0]
3: for t = 1 to T − 1 do
4: Propt = βP·Yt +(1−β)(M ·P)·Yt # global- and local-propagation
5: Yt+1 = M · Propt/k
6: Y l

t+1 = M · Y l
t+1/k # Dynamic clamping

7: end for
8: return Yt

We then take the cluster assumption; we calculate the aver-
ages from the top-k similar data and set them as the result
of the propagation. The following equation invokes this pro-
cess:

Yt+1 =
M · Propt

k
(4)

4.2 Dynamic Clamping

The second extension is the dynamic clamping. We define
this clamping as updating values of Y l from the top-k similar
data in each iteration after propagating labels. Thus, LPAC
may propagate different (dynamic) values from labeled data
in each iteration, whereas the traditional LP algorithm prop-
agates the same (static) label values from the labeled data.
To perform the dynamic clamping, LPAC uses the M rep-
resenting KNN to calculate the average values of the top-k
similar data for each label. These values are set before in-
voking the next iteration as follows:

Y l
t+1 =

M · Y l
t+1

k
(5)

4.3 Overview of the Algorithm

Finally, we show our entire algorithm in Algorithm 2. The
first line defines a probabilistic transition matrix P and a
KNN matrix M. After defining a label matrix at line 2, LPAC
iteratively applies to the two extensions (from lines 4 to 6).
Finally, LPAC returns the label matrix.

5 Experimental Evaluations

We performed two types of evaluations. The first one is a
quantitative evaluation to measure the accuracies of classi-
fiers on document and image datasets. The second one is a
case study evaluation to observe the usefulness of LPAC in
practical situations. All of these evaluations were performed
on a macOS High Sierra computer with an Intel Core i5 (3.1
GHz) CPU and 8 GB of memory.
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5.1 Experimental Setting

Algorithms. For all the evaluations, we compared the LPAC
with the following seven baselines:

1. RF. RF is one of the most popular algorithms for MLC.
2. SVM. SVM is also one of the popular algorithms for

MLC. We trained the SVM with a linear kernel.
3. SSL-RF. This classifier is an RF trained as SSL. This

classifier applies the EM algorithm to train the RF clas-
sifier iteratively.

4. SSL-SVM. This classifier is an SVM-linear kernel trained
as SSL. This classifier applies the EM algorithm to iter-
atively train the SVM classifier.

5. LP. This is the fundamental algorithm described in Sec.
3.

6. Dynamic LP (DLP). DLP dynamically propagates label
values from top similar nodes during the iteration pro-
cess. As this dynamic propagation is useful to address
error propagation [24] that smoothens effects of wrong
labels, we implemented DLP as a baseline.

7. LP through linear neighborhoods (LNP). This algorithm
is an extension of LP for discovering the structure of an
entire dataset through the linear neighborhoods of each
data. As this algorithm updates label values from the top
similar data, we implemented LNP as a baseline.

Because SSL may generate weak results compared with
supervised learning [34], we trained the RF and SVM classi-
fiers as supervised learning method to compare SSL with su-
pervised learning. The EM algorithm iterates classifier train-
ing and label assignments to increase the size of the labeled
data; thus, it is necessary to define a strategy for the label as-
signment procedure. We used the same strategy as that used
in training the RF and SVM in the supervised learning man-
ner.

Evaluation Measures. The algorithms were evaluated
using the F-score, defined as follows:

MiP =
TP

TP + FP
(6)

MiR =
TP

TP + FN
(7)

F − score =
2MiPMiR

MiP + MiR
(8)

where TP is true positive, FP is false positive, FN is false
negative, MiP (micro-average precision) is the number of
TPs in each category divided by the total number of TPs and
FPs in each category, and MiR (micro-average recall) is the
number of TPs in each category divided by the total number
of TPs and FNs in each category. The trade-off between the
micro-average precision and micro-average recall is formal-
ized by their harmonic mean, known as the micro-average
F-score. Hereinafter, these terms are simply referred to as
precision, recall, and F-score.

Table 1 Statistics of document dataset.

Num. of categories 22
Num. of labeled data 4,819

Num. of unlabeled data 4,819
Num. of test data 4,819

Ave. length per document 1191.3
Ave. num. of categories per document 3.41

5.1.1 Quantitative Evaluation

As for quantitative evaluation, we perform document and
image classifications under the following research questions.

– RQ1. How well does each classifier correctly predict test
data without missing labels on training data?

– RQ2. How stable does each classifier predict correct la-
bels even though missing labels exist?

Parameters. We set T (the iteration number of LP), the
dimension of the latent Dirichlet allocation (LDA) [2] that is
used to create feature vectors in document classification, k,
and β to 1,000, 1,000, 5, and 0.1 respectively. All these val-
ues were empirically selected based on analyzing the results
on a small held-out development dataset. It is noteworthy
that DLP uses two additional parameters (λ and α). We set
them to the same values used in [27]. Finally, we set 0.2 as a
threshold for label assignment after the iteration of LP-based
algorithms because these algorithms only assign a score for
each label to each data point.

Dataset for Document Classification. We used the SIAM
2007 Text Mining Competition dataset, which is a subset of
the Aviation Safety Reporting System dataset. It provides
various types of aviation safety events reported by pilots,
controllers, mechanics, flight attendants, and dispatchers. This
dataset defines 22 categories and assigns 3.41 labels for each
document on average.

Next, to create missing labels for analyzing RQ2, we in-
tentionally removed the attached labels of the documents.
We first selected 9,638 labeled data from the SIAM 2007
Text Mining Competition dataset. Subsequently, we removed
all labels from 4,819 documents. Therefore, we prepared
4,819 and 4,819 labeled and unlabeled data, respectively.
Tab. 1 summarizes the statistics of the dataset that we used
for the evaluation. Next, to create different sizes of miss-
ing labels, we selected several labeled documents from the
4,819 labeled data to remove their labels. We first extracted
some data from this dataset to remove the labels; subse-
quently, we removed the labels attached to the data. Both
the extraction ratio and removal ratio increased from 10% to
100%, in 10% increments, and were selected randomly. For
all the cases, we inspected the F-scores, which were mea-
sured by the 10-fold cross-validation of classifiers that were
trained on the dataset.
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Table 2 Statistics of image dataset.

Num. of object categories 8
Num. of shape classes 3
Num. of labeled data 48

Ave. num. of categories per document 2

Dataset for Image Classification. We evaluated the six
algorithms, which were RF, SVM, LP, DLP, LNP, and LPAC
for image data using a toy dataset3. This dataset defines
two categories: objects (helmet, kettle, joystick, keyboard,
mouse, stapler, barrel, and mug) and shapes (triangle, square,
and circle). Each image is classified into 2 categories: one
from the object category and the other one from the shape
category. This dataset contains only 48 data; therefore, it
is a challenging dataset. We decided to omit SSL-RF and
SSL-SVM in this evaluation as this dataset is insufficient for
preparing unlabeled data. Tab. 2 shows the statistics of the
image dataset.

We created different sizes of missing labels dataset by
the same procedure as the one used in the document classi-
fication. The detail is described in Sec. 5.2.2.

5.1.2 A Case Study: Classification on Wikipedia Category

Finally, we evaluated how well LPAC assigned correct labels
to the English version of Wikipedia articles, which were data
comprising missing labels.

Research Questions. Wikipedia comprises numerous cat-
egories. The broad range of categories is suitable for en-
compassing a significant number of topics; however, as de-
scribed in Sec. 1, several articles contained missing labels.
Hence, we evaluated RF, SVM, and all LP-based algorithms
based on the following research questions.

– RQ3. How accurately does each algorithm predict the
correct categories?

– RQ4. How is each algorithm useful in automatic anno-
tations or providing hints for manual annotations?

Parameters. We used the same values as in the docu-
ment classification experiment (Sec. 5.1.1) for the parame-
ters of this experiment.

Data Collection Procedure. To the best of our knowl-
edge, no ground truth dataset exists for this case study; there-
fore, we developed a dataset from the topic of natural dis-
aster. To collect these articles, we performed a Wikipedia-
category-based article crawling. First, we collected all types
of disasters that were stored in “Natural disasters by country”
category4. Subsequently, we obtained five categories of nat-
ural disasters: Avalanches, Floods, Tornadoes, Earthq-

3 https://github.com/AliAbbasi/Multilabel-Image-Classification-
with-Softmax

4 https://en.wikipedia.org/wiki/Category:Natural_disasters_by_
country

Table 3 Statistics of Wikipedia dataset.

Num. of training articles 1,347
Num. of test articles 25

Num. of Wikipedia categories 6
Ave. length per document 7,878.4

Ave. num. of categories per document 352.5

Table 4 Statistics of Wikipedia category. Average lengths and num-
bers of Wikipedia articles for each Wikipedia category used in training
dataset.

Wiki. Cat. Ave. len. Num. of Wiki. Art.
Avalanches 3,193.3 28
Floods 6,359.2 328
Tornadoes 6,733.8 57
Earthquakes 3,151.1 772
Landslides 5,967.7 158

Natural disasters 7,082.0 144

uakes, and Landslides. For each disaster d, we further
collected all the Wikipedia pages stored in d by country5 6

7 8 9. Tab. 3 shows the statistics for the results obtained by
crawling. From the Wikipedia-category-based article crawl-
ing, we obtained 1,372 Wikipedia pages. Tab. 4 shows the
statistics of the training dataset.

Test Data Creation. Tab. 5 shows the test data we used
in this evaluation. The first column assigns abbreviated in-
dexes for the test data to ease the presentation. The second
column lists the names of the test data. We randomly se-
lected five Wikipedia articles for each Wikipedia category
related to the natural disasters. The third column shows the
lengths of the test data. The last six columns represent whether
each test data point was part of the Wikipedia categories.
These six columns present results of our manual review for
evaluating whether each test data belonged to suitable Wikipedia
categories. If a suitable Wikipedia category is correctly as-
signed to the article, we then use the checkmark (X); other-
wise, we use a hyphen (-). For the manual review of the cat-
egories, we asked three volunteers to evaluate the Wikipedia
categories that should be assigned to the test data. All these
subjects have Ph. D. degrees and had worked in the field of
machine learning. The three volunteers provided the same
results; hence, we used the results as the test data, as shown
in Tab. 5.

Evaluation Criteria. For RQ3, we evaluated all the clas-
sifiers by the micro-average precision, recall, and F-score as
defined in Eqs. 6, 7, and 8, respectively.

5 https://en.wikipedia.org/wiki/Category:Avalanches_by_country
6 https://en.wikipedia.org/wiki/Category:Floods_by_country
7 https://en.wikipedia.org/wiki/Category:Tornadoes_by_country
8 https://en.wikipedia.org/wiki/Category:Earthquakes_by_

country
9 https://en.wikipedia.org/wiki/Category:Landslides_by_country
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Table 5 Assigned Wikipedia categories. Checkmark (X) and hyphen (-) denote categories assigned to Wikipedia article and missed to be
assigned, respectively. Abbreviated name of Wikipedia category is for Natural disasters (N.D.)

Wiki. Article Title of the Wiki. Article Len. Avalanches Floods Tornadoes Earthquakes Landslides N.D.

WA1 Tornado outbreak of May 15–17, 2013 5,272 X X
WA2 1986 Vrancea earthquake 2,939 X -
WA3 2015 Afghanistan avalanches 885 X X
WA4 2015 Guatemala landslide 2,236 - X -
WA5 Pantai Remis landslide 1,379 X X -
WA6 1978 Singapore flood 438 X -
WA7 2016 Geier avalanche 1,334 X X
WA8 2009 Schalfkogel avalanche 1,932 X X
WA9 1985 Puerto Rico floods 9,144 X X X
WA10 1983 Sea of Japan earthquake 3,877 X -
WA11 1981 Sirch earthquake 720 X -
WA12 1983 Erzurum earthquake 133 X -
WA13 Southern Ontario Tornado Outbreak of 2009 9,634 X X
WA14 Tornado outbreak of June 5–6, 2010 4,450 X X
WA15 1981 Irian Jaya earthquake 2,320 X -
WA16 2015 East Malaysian floods 7,294 X -
WA17 2014 Hiroshima landslides 5,334 X -
WA18 2015 Argentina floods 998 X -
WA19 November 1989 tornado outbreak 9,439 X X
WA20 2015 South Indian floods 76,909 X -
WA21 Valfréjus avalanche 2,540 X X
WA22 Tornado outbreak of May 26–31, 2013 16,127 - X X
WA23 2015 Colombian landslide 2,960 - X -
WA24 1954 Blons avalanches 730 X X
WA25 2015 Bahia landslide 122 X -

For RQ4, we evaluated the number of suitable categories
that were assigned by each classifier to the test Wikipedia
articles.

5.2 Result Analysis

5.2.1 Document Classification

Feature Vector Creation. To train the classifiers, feature
vectors must be created at first. In this document classifica-
tion, we compared three types of feature vectors, namely:
bag-of-words (BoW), LDA10, and Doc2Vec11 [12]. These
three feature vectors were selected as they are widely used in
document classification. BoW indicates that feature vectors
were created by counting the number of words in each docu-
ment; hence, the dimensional size is equivalent to the size of
the word set. LDA is an unsupervised and probability-based
topic detection algorithm. For a specified number of topics,
LDA inferences all the topics provided by the entire dataset;
subsequently, it calculates the distribution of the relationship
of each document to each topic. As the distribution can be
used as a feature vector, we used them to train the classi-
fiers. To train an LDA model, we used both labeled and un-
labeled data. Doc2Vec is a neural-network-based algorithm
extended from Word2Vec [15–17]. Word2Vec assigns vec-
tors to words by embedding words into vector spaces by em-
ploying CBOW and Skip-gram models. Doc2Vec introduces

10 https://radimrehurek.com/gensim/models/ldamodel.html
11 https://radimrehurek.com/gensim/models/doc2vec.html

Table 6 Feature selection results. Precision, recall, and F-scores of
LPAC equipped with BoW, LDA, and Doc2Vec.

BoW LDA Doc2Vec
MiP 62.6% 65.7% 50.0%
MiR 60.7% 68.8% 36.1%

F-score 61.7% 67.2% 42.0%

a paragraph vector to the two models. Similar to LDA, we
trained the Doc2Vec model on both the labeled and unla-
beled data.

Tab. 6 shows the results of LPAC trained on the entire
dataset. As shown, the most suitable method to generate the
feature vector was by using the LDA. As applying the LDA
reduces the dimensions of the feature vectors, it is better
than BoW. Additionally, Doc2Vec was useful for reducing
dimensions; however, its result was worse than that of BoW.
As Doc2Vec is a neural network-based approach, it requires
a significant amount of training data. However, we used less
than 10,000 training data. If more training data are used,
then Doc2Vec may be as useful as the LDA. Therefore, we
only used the LDA in the remainder of the document classi-
fication experiments.

Discussions of Accuracies. The results of the document
classification are shown in Fig. 3. Figs. 3 (a) ∼ (h) show
the accuracies of each classifier, which had been trained on
datasets wherein 0% ∼ 100% of the documents did not con-
tain any labels. Based on the accuracies of the LPAC that
were trained on a dataset wherein 0% ∼ 90% of the docu-
ments contained missing labels, the scores were similar to
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(b) DLP

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
0.0

0.2

0.4

0.6

1.0

0.8

(c) LNP
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(d) LP
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(e) RF
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(f) SVM
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(g) SSL-RF
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(h) SSL-SVM

Fig. 3 F-scores for document classification. Each sub-figure shows micro-averaged F-scores for each classifier. The x-axis represents ratio of
missing labels. The y-axis represents ratio of documents containing missing labels. Each cell color represents the F-score. Red cell indicates a
better accuracy than blue cell.

those of the SVM and RF, which were trained on a dataset
wherein 10% of the documents contained missing labels. By
contrast, all baselines tended to yield deteriorated accuracies
once the ratio of missing-label documents exceeded 30%.
In particular, once the missing-label ratio reached 50%, the
accuracies of DLP, RF, SVM, SSL-RF, and SSL-SVM de-
creased rapidly from approximately 10% to 50%. Further-
more, LNP and LP tended to maintain their accuracies, but
their scores were lower than those obtained by LPAC.

For a better comparison among all classifiers, Figs. 4 and
5 show their F-scores for cases wherein we extracted 50%
and 70% of documents for removing labels, respectively.
When the ratio of missing labels reached over 40%, the F-
scores of five baselines (DLP, RF, SVM, SSL-RF, and SSL-
SVM) began to decrease earlier compared with the case for
0 ∼ 40%. Moreover, when the ratio was over 80%, the accu-
racies of RF, SVM, SSL-RF, and SSL-SVM decreased sig-
nificantly. In the case wherein 70% of the documents were
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Fig. 4 F-scores when 50% of documents contained missing labels.
The x-axis represents ratio of missing labels whereas the y-axis repre-
sents F-score.
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Fig. 5 F-scores when 70% of documents contained missing labels.
The x-axis represents ratio of missing labels whereas the y-axis repre-
sents F-score.

extracted, the accuracies of almost all the baselines began to
decrease when the ratio of missing labels reached 20%. Con-
versely, LPAC maintained a stable accuracy for all missing
label ratios.

Based on the discussions above, we summarize the an-
swers for the two research questions here.

An answer for RQ1. By observing the two figures (Figs.
4 and 5), the initial F-score of SVM was the best among all
the classifiers as it exceeded 70%. LPAC performed worse
than the SVM and SSL-RF; however, the F-score for LPAC

0.0
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0.4

0.6

1.0

0.8

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

0%

50%

70%

Fig. 6 Correlation between number of training labels and F-scores
of LPAC. The x-axis represents number of training data. The y-axis
represents value of F-scores. Blue, yellow, and green points represent
F-scores when 0%, 50%, and 70% of documents contained missing
labels, respectively.

was also approximately 70%. This result indicates that LPAC
can be used practically.

An answer for RQ2. LPAC maintained its F-scores even
when correct labels were removed for 70% of the training
data. This indicates that LPAC is useful as a semi-supervised
learning method. This property was observed for other LP-
based algorithms; however, LPAC achieved better scores than
other LP-based algorithms. By contrast, the scores of the
SVM, RF, and their SSL-style classifiers decreased when the
number of missing labels increased rapidly.

We subsequently evaluated LPAC to obtain a better un-
derstanding of the amount of data required to obtain high ac-
curacies. Fig. 6 shows the correlation between the F-scores
and the number of labeled documents for LPAC. We plot-
ted the results of three cases, where 0%, 50%, and 70% of
the documents contained missing labels. Fig. 6 shows that a
positive correlation existed among them. In fact, their corre-
lation coefficiencies were 0.76, 0.72, and 0.75, respectively.
Hence, we concluded that the number of correct labels that
were assigned to the training data was directly proportional
to the achievable accuracy.

Finally, we compared the analysis times of the LP-based
algorithms in terms of the time complexity and practical
measured times.

To compare the time complexities, we separated all LP-
algorithms into two phases: matrix construction and label
propagation. First, LP, DLP, and LPAC constructed a proba-
bilistic transition matrix (P) whose time complexity isO(n2).
In addition, DLP and LPAC construct a KNN matrix whose
time complexity isO(n). Furthermore, DLP constructs a KNN
matrix corresponding to P that can be created by averag-
ing the top-k of each data point in O(kn). By contrast, LNP
solves standard quadratic programming problems to con-
struct a weight matrix. It is well known that solving stan-
dard quadratic programming problems is NP-hard [19]; this
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Table 7 Analysis times. Times for creating matrices and propagation
until achieving convergence (s).

LP DLP LNP LPAC
Creating Matrices 10.4 20.2 1186.7 16.8

Propagation 8.9 2197.8 0.8 14.9
Total 19.3 2218.0 1187.5 31.7

indicates that the time complexity for the matrix construc-
tion of LNP is not polynomial time. We solved the problem
using the CVXOPT12 library, which uses a Newton method
whose order is O(n3)13 t times. As this process is the most
expensive, we regarded the time complexity for constructing
a weight matrix in LNP as O(tn3). Hence, in the matrix con-
struction phase, LPAC is the second fastest among the four
algorithms.

Based on the propagation phase, all algorithms iterate
the propagation T times or until convergence is achieved.
LP performs only a matrix multiplication wherein the time
complexity isO(Tn). LPAC performs the Hadamard product
and the averaging scores of top-k of all data points twice, in
addition to the LP process. As the two additional processes
are performed to obtain the top-k of each data point, the time
complex of each additional process is O(kn). Therefore, the
time complexity of LPAC is calculated as O(Tkn). DLP per-
forms fusion and diffusion, wherein the time complexities
are O(n2) and O(kn2 + kn), respectively; in addition, it ac-
complishes a matrix multiplication identical to that of LP.
Hence, the complexity of DLP is O(Tkn2 + Tkn). LNP per-
forms a matrix multiplication and a matrix addition, and its
complexity is O(Tn). Therefore, in the propagation phase,
LPAC is the third fastest among the four algorithms.

Next, we present the measured practical analysis time of
the LP-based algorithms in Tab. 7. We categorized the anal-
ysis times into two types, namely: for creating matrices and
propagating labels. These times were measured for the orig-
inal dataset and no labels were removed. In total, LP was the
fastest and was approximately twice as fast as LPAC. Com-
paring LPAC with the other two algorithms, LPAC was at
least 37-fold faster. Based on the propagation time of LNP,
it was the fastest of the four algorithms; this was because
its the number of iterations was the smallest. Next, we dis-
cuss how the iteration times increase with the number of
iterations. Fig. 7 plotted the y-axis as a log scale to compare
LPAC with all the baselines; this is because DLP requires
a significant amount of time for the propagation, rendering
it difficult to observe the differences between LP, LNP, and
LPAC. We observed that all these algorithms increased lin-
early with the analysis time.

12 http://cvxopt.org/userguide/coneprog.html#
quadratic-programming

13 http://www.seas.ucla.edu/˜vandenbe/publications/mlbook.pdf
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Fig. 7 Analysis times of iterations. The x-axis represents number of
iterations. The y-axis represents log-scaled analysis time (s).

5.2.2 Image Classification

Feature Vector Creation. In this image classification, we
used the pixel data to convert all the images into feature vec-
tors.

Discussions of Accuracies. Figs. 8 (a) ∼ (f) show the F-
scores of each classifier that was trained on datasets wherein
0% ∼ 100% of the images did not contain correct labels.
Based on these results, we discovered that LPAC outper-
formed the comparative algorithms as all LP-based base-
lines completely failed to predict the correct labels for all
the cases. RF and SVM successfully assigned correct la-
bels for several cases; however, LPAC operated at better
accuracies. Subsequently, we evaluated how LPAC main-
tained its F-scores even when the number of attached la-
bels decreased as well as the document classification. Figs. 9
and 10 show the F-scores in cases where we extracted 40%
and 60% of the images to remove the labels, respectively.
When no labels were removed, three algorithms (LPAC, RF,
and SVM) achieved more than 50% F-scores. In particular,
LPAC achieved the best score (approximately 54.5%). As
shown in Fig. 9, both LPAC and RF maintained their scores,
whereas SVM demonstrated a linear decrease. Based on Fig.
10, all the three classifiers failed to maintain their scores.
When all the labels for 60% of the images were removed, RF
emerged as the best algorithm; however, the difference be-
tween LPAC and RF was small as their F-scores were 20.0%
and 22.2%, respectively.

An answer for RQ1. Based on the two figures (Figs. 9
and 10), the initial F-scores of LPAC were the best among
those of all the classifiers discussed in the experimental re-
sult.

An answer for RQ2. LPAC maintained its F-scores even
on when the correct labels for 40% of the training data were
removed. However, upon the removal of the correct labels
for 60% of the training data, the scores became difficult to
maintain.
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(b) DLP
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(c) LNP
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(d) LP
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(e) RF

0.0

1.0

0.2

0.4

0.6

0.8

0 1 2

0

10

20

30

40

50

60

70

80

90

100

(f) SVM

Fig. 8 F-score for image classification. Each sub-figure shows micro-averaged F-scores for each classifier. The x-axis represents ratio of missing
labels. The y-axis represents ratio of images containing missing labels. Each cell color represents the F-score. Red cell indicates a better accuracy
than blue cell.
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Fig. 9 F-score when 40% of images contained missing labels. The
x-axis represents number of missing labels whereas the y-axis repre-
sents F-score.

5.2.3 A Case Study

Feature Vector Creation. We created feature vectors using
the process used for document classification (Sec. 5.2.1) in-
cluding the LDA usage.

Analysis for RQ3. Tab. 8 shows the precision, recall,
and F-score obtained from this experimental evaluation. As
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Fig. 10 F-score when 60% of images contained missing labels. The
x-axis represents number of missing labels whereas the y-axis repre-
sents F-score.

Table 8 Accuracies of the case study.

LPAC DLP LNP LP RF SVM
MiP 78.2% 42.9% 26.0% 26.0% 83.3% 100.0%
MiR 79.6% 38.9% 24.1% 24.1% 18.2% 52.7%

F-score 78.9% 40.8% 25.0% 25.0% 29.9% 69.0%
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Table 9 Results of the case study. Checkmark (X) and X mark (×) denote the correct and wrong predictions of the categories, respectively. The
hyphen (-) indicates that the classifier misses assigning the correct category.

Alg. Wiki. Article Avalanches Floods Tornadoes Earthquakes Landslides Natural disasters

LPAC

WA1 X -
WA2 × X -
WA3 X X
WA4 X × X X
WA5 X × X X
WA6 X × X
WA7 X X
WA8 X X
WA9 X × X -
WA10 X × X
WA11 X -
WA12 X -
WA13 X X
WA14 X X
WA15 X -
WA16 X -
WA17 × × X X
WA18 X × -
WA19 X X
WA20 X -
WA21 X X
WA22 - X X
WA23 X X X
WA24 X × X
WA25 × X -

DLP

WA1 × × X × × X
WA2 X -
WA3 - × × -
WA4 - × - -
WA5 X × - -
WA6 X × -
WA7 - × × -
WA8 - × × -
WA9 - × - -
WA10 X -
WA11 X -
WA12 X -
WA13 × X X
WA14 × X X
WA15 X -
WA16 X × -
WA17 × - -
WA18 × -
WA19 × X X
WA20 X × -
WA21 - × × -
WA22 X X X
WA23 X × - -
WA24 - × × -
WA25 × × - -

all scores of LPAC were greater than 78%, this classifier
yielded outstanding predictions; hence, we can conclude that
LPAC is useful for automatic annotations. In particular, the
recall was approximately 80%; this score was the most im-
portant of the three in this case study. Furthermore, LPAC
was the best among all the classifiers in terms of the F-score;
therefore, we can conclude that LPAC was the best classifier
in this case study. In terms of precision, SVM was the best as
it achieves 100%. However, in terms of the recall, its score
was approximately 53%; therefore, its F-score was less than
70%. This tendency was observed in RF as well, wherein
only the precision was high but the other scores were low.

Additionally, we observed that the three LP-based baselines
achieved low scores for all observations.

Analysis for RQ4. We analyzed the categories predicted
by each classifier. Tabs. 9, 10, and 11 show the categories
predicted by all the classifiers. In the tables, the checkmark
(X) and X mark (×) denote the correct and wrong predic-
tions of the classifier, respectively. A hyphen (-) signifies
that the classifier did not assign a suitable category.

First, we verified the number of correctly assigned cat-
egories. We observed that LPAC correctly predicted almost
all the test data. In particular, for two categories (Avala-
nches and Tornadoes), LPAC yielded perfect predictions.
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Table 10 Results of the case study. Checkmark (X) and X mark (×) denote the correct and wrong predictions of the categories, respectively. The
hyphen (-) indicates that the classifier misses assigning the correct category.

Alg. Wiki. Article Avalanches Floods Tornadoes Earthquakes Landslides Natural disasters

LNP

WA1 × - × -
WA2 × X -
WA3 - × × -
WA4 X × - -
WA5 X × - -
WA6 X × -
WA7 - × × -
WA8 - × × -
WA9 X × - -
WA10 × X -
WA11 × X -
WA12 × X -
WA13 × - × -
WA14 × - × -
WA15 × X -
WA16 X × -
WA17 × × - -
WA18 X × -
WA19 × - × -
WA20 X × -
WA21 - × × -
WA22 X - × -
WA23 X × - -
WA24 - × × -
WA25 × × - -

LP

WA1 × - × -
WA2 × X -
WA3 - × × -
WA4 X × - -
WA5 X × - -
WA6 X × -
WA7 - × × -
WA8 - × × -
WA9 X × - -
WA10 × X -
WA11 × X -
WA12 × X -
WA13 × - × -
WA14 × - × -
WA15 × X -
WA16 X × -
WA17 × × - -
WA18 X × -
WA19 × - × -
WA20 X × -
WA21 - × × -
WA22 X - × -
WA23 X × - -
WA24 - × × -
WA25 × × - -

In addition, for the Natural disasters category, LPAC
was the best among all the classifiers in terms of the number
of labels assigned. The results for Landslides indicated
only a single mispredicted datum (WA10). For these cate-
gories, LPAC demonstrated suitable accuracies. However,
for the Floods and Earthquakes categories, the number
of mispredictions were higher compared to those of other
categories. This tendency was also observed in other LP-
based algorithms; however, the other three LP-based base-
lines demonstrated more mispredictions for these two cat-
egories. This was because the sizes of the Wikipedia arti-
cles that were based on these two categories were larger than

those based on the other categories, as shown in Tab. 4. Un-
expectedly, SVM and RF demonstrated better results than all
the LP-based classifiers in these two categories. RF demon-
strated errors in the prediction for two data (WA7 and WA25)
as Earthquakes, but no mispredictions were observed for
the category of Floods.

Next, we analyzed the missing labels. In the four cate-
gories (Avalanches, Tornadoes, Earthquakes, and Lan-
dslides), LPAC did not demonstrate any missing predic-
tions. In the Floods category, the classifier missed the pre-
diction for only one datum (WA22). It is noteworthy not-
ing that WA22 did not belong to a category in the original
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Table 11 Results of the case study. Checkmark (X) and X mark (×) denote the correct and wrong predictions of the categories, respectively. The
hyphen (-) indicates that the classifier misses assigning the correct category.

Alg. Wiki. Article Avalanches Floods Tornadoes Earthquakes Landslides Natural disasters

RF

WA1 X -
WA2 X -
WA3 - -
WA4 X - -
WA5 - - -
WA6 - -
WA7 - × -
WA8 - -
WA9 X - -
WA10 X -
WA11 X -
WA12 X -
WA13 - -
WA14 - -
WA15 X -
WA16 X -
WA17 - -
WA18 - -
WA19 X -
WA20 X -
WA21 - -
WA22 - - -
WA23 X - -
WA24 - -
WA25 × - -

SVM

WA1 X -
WA2 X -
WA3 X -
WA4 - X -
WA5 - X -
WA6 X -
WA7 X X
WA8 X X
WA9 X X -
WA10 X -
WA11 X -
WA12 X -
WA13 X -
WA14 X -
WA15 X -
WA16 X -
WA17 - -
WA18 X -
WA19 X -
WA20 X -
WA21 X X
WA22 - X -
WA23 - X -
WA24 X X
WA25 X -

Table 12 Number of Wikipedia articles under category of Natural
disasters (N.D.). Third column indicates ratios of Wikipedia articles
in training data having Natural disasters categories.

Wiki. Cat. Num. of Articles having N.D. Raio
Avalanches 16 57.1%
Floods 59 18.0%
Tornadoes 22 38.6%
Earthquakes 11 1.4%
Landslides 33 20.9%

Wikipedia article (see Tab. 5); in other words, this classifier,
at least for this category, can assign categories to Wikipedia

articles as effectively as a human. Furthermore, no missed
predictions were observed in the results of LNP and LP for
this category; however, the two classifiers predicted these
two categories for all the data; this implies that they were
overfitting for these two categories. In the Natural disaster
category, LPAC could not assign a category to 10 test data.
To determine the reason, we investigated the ratio of la-
beled data in the category. Tab. 12 shows the ratios of the
number of Wikipedia articles that were categorized under
Natural disasters. We observed that the percentage of
articles on the Floods and Earthquakes categories were
under 20%; in particular, only 1.4% of the Wikipedia arti-
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cles under the Earthquakes category were classified un-
der Natural disasters. This low score may have caused
LPAC to wrongly assign Earthquakes category to several
test data. We believe that it is better to increase these ratios
to achieve a more effective automatic classification.

Finally, we analyzed the wrongly assigned labels by LPAC.
As discussed previously, LPAC assigned wrong labels to 10
Wikipedia articles in the Floods and Earthquakes cate-
gories. We asked three volunteers who have Ph. D. degrees
and had worked on studies associated with machine learning
the following question: How useful is LPAC for supporting
the initial decisions of assigning labels? As the list may in-
clude the wrong category and missing labels, please remove
unnecessary categories or add new suitable categories if nec-
essary. We showed these volunteers all the results of the 10
Wikipedia articles (WA2, WA4, WA5, WA6, WA9, WA10, WA17,
WA18, WA24, and WA25) to which LPAC had assigned the
wrong labels. This was performed without informing them
that those labels actually represented the wrong categories.
We observed that all the volunteers removed the wrongly
assigned categories by LPAC and categorized those articles
as Natural disasters. This result indicates that the re-
sult of the wrongly assigned category can be corrected by
human judgment; therefore, LPAC is useful for facilitating
decision making with respect to manually assigning specific
Wikipedia categories to Wikipedia articles.

Answer for RQ3. LPAC was useful for automatic an-
notations because all of its scores for precision, recall, and
F-score exceeded 78%.

Answer for RQ4. LPAC is useful for facilitating deci-
sion making with respect to manually assigning Wikipedia
categories to Wikipedia articles. As the accuracy of LPAC
was high, the required human correction became affordable;
therefore, the human annotators successfully removed the
wrong categories and added the correct ones that were missed
by LPAC.

5.2.4 Limitations and discussions of this case study.

In this study, we focused on data from five natural disasters
collected from the Natural disasters category; however,
more types of disasters exist, such as tsunamis. We suggest
improving problems associated with inaccessible categories
to reduce problems related to missing labels. After increas-
ing the efficiency of the categorizing system, we can per-
form error analyses in detail; for example, how well does
LPAC assign correct labels to articles in cases of causali-
ties (e.g., between earthquakes and tsunamis) or correlations
(e.g., heavy rains and landslides) between the categories.

In addition, Wikipedia comprises various articles that
elucidate numerous categories, such as crimes, people, coun-
tries, and groups. As many events can be correlated to each
other, other articles must be evaluated to improve the au-

tomatic identification of the relationships between different
entity types. If we can apply classifiers to obtain these re-
lationships, we can then further improve the capabilities of
Wikipedia, e.g., the development of thematic timelines of
events that are listed by each person or group and the mea-
surement of the importance of people based on their action
when applying PageRank.

5.3 Summary of Discussions

Finally, we summarize the key results, findings, and sugges-
tions from our evaluations.

– The document classification showed that LPAC was the
best algorithm among the eight algorithms used in this
study if half or more training data contained missing la-
bels.

– The document and image classifications showed that LPAC
was the best in terms of stability.

– Although LPAC predicted correct labels using missing
labels datasets, the number of correct labels that were
assigned to the training data was directly proportional to
the accuracy achieved by LPAC.

– The analysis time of LPAC increased linearly with the
number of iterations.

– In the case study, LPAC was the best algorithm in terms
of the micro-average recall and F-score for classifying
articles under the category of Natural disasters, as
defined in Wikipedia.

– LPAC was useful in facilitating manual annotations for
obtaining the initial decisions of the process.

– The evaluation of other types of articles is an important
future endeavor to automatically improve the identifica-
tion of relationships between different entity types.

6 Conclusions & Future Studies

In this study, we proposed a novel graph-based multi-label
classification (LPAC) to apply to a moderately challenging
multi-labeling task. LPAC enforces propagations of miss-
ing labels by two extensions: propagating labels according
to top-k similar data and updating labeled data. As demon-
strated in our experiments, these two extensions rendered
the F-score of the LPAC stable, as compared to previously
proposed algorithms. In addition, a case study showed that
LPAC achieved the best scores among all the classifiers used
in this study, indicating its usefulness for manual annota-
tions as initial decisions.

In future studies, we will identify (a) the effective utiliza-
tion of label correlation. Once our algorithm is expanded
to achieve label correlation, we can implement label rec-
ommendations. This suggestion should be helpful, in par-
ticular for cases wherein numerous labels exist, such as the
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Wikipedia category system. In addition, we will (b) estab-
lish an algorithm that can be trained on datasets that in-
clude both wrong and missing labels. Although this study
assumed that no data were attached to any wrong labels, real
datasets might contain both kinds of labels simultaneously.
Accordingly, we will investigate the method to reduce noise.
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