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Abstract—Study and analysis of past events can provide nu-
merous benefits. While event categorization has been previously
studied, it was usually assigned only one event category to an
event. In this work we focus on multi-label classification for past
events that is a more general and challenging problem than the
previous studies. We categorize them into 13 event categories
using a range of diverse features and report micro-average F1
score is improved approximately by 10% compared with the
state-of-the-art algorithm.

Index Terms—Multi-label classification, document classifica-
tion, history, event

I. Introduction

Study and analysis of past events can provide numerous
benefits, including an enhanced perception of the legacies
of the past in the present and enabling learners to make
valuable connections through time [4], [17]. One of the goals
of imparting recent history education at high schools is to
enable students to study how people or organizations in history
tried to solve problems in the events. Students can then
apply this knowledge to consider creative solutions to social
problems in present events [9]. In addition, there are many
applications if we correctly understand event descriptions. For
example, by being able to tell the categories of mentioned
events one could better understand thanks to studying which
past event types are mentioned in news articles. Equipped
with knowledge on the categories of past event mentions one
could also foster collective memory studies [1] as well as
support search methods for finding historical events. Finally,
the classification technique could be used for constructing
thematic timelines or event lists (e.g., list of disasters/accidents
in Asia, timeline of armed conflicts in USA).

We focus in this work on the problem of multi-label
classification (MLC) for events that assigns more than one
category to each event. For example, if we read the Wikipedia
article1 to know what the 2014 West Africa Ebola outbreak
caused in our life, we can see that it killed many both human
and nonhuman (environment event), we developed a vaccine
(technology event), some researchers report the details and
their statistics (academic event), and so on. Tab. I shows other
examples of multi-labeled events.

This work was supported in part by MEXT Grant-in-Aids (#17K12792 and
#26750076).

1https://en.wikipedia.org/wiki/West African Ebola virus epidemic

TABLE I
Example events. Our classifier takes descriptions of events; however, We
put only short descriptions or names of events to save space in this table.

The abbreviated names of categories are used: Reign (Rg), Diplomacy (Dp),
War (Wr), production (Pr), Commerce (Cr), Study (St), Religion (Rl),
Literature and Thought (LT), Technology (Tc), Popular Movement

(PM), Community (Cn), Disparity (Ds) and Environment (En).

Event Categories
Agnes Chan named UNICEF Regional Ambassador
for East Asia and Pacific Region.

Dp, Cn and LT

The World Strikes a Deal on Climate Change. En

Paris attacks. Dp, Rg and PM
ISIS Terrorists Strike on Three Continents. Dp, Rl, Wr and PM
Same-Sex Marriage Debate. LT and Cn
Ebola outbreak. En, AC and Tc
The Scottish independence referendum. Rg, PM and Cn

The main challenge lies in the scarcity of data, the ambi-
guity of expressions and variety of diverse means in which
events can be referred to. Furthermore, oftentimes, in realistic
scenarios, events are not called by their explicit names, or,
they may have no known names2. Consequently, their auto-
matic detection using NER tools is problematic. We make
an assumption that the context of such descriptions (e.g.,
surrounding sentences in original text) is not available to
cover also the case of standalone descriptions like the lists
of significant events in each month of the Wikipedia’s Current
Portal3. Hence we rely only on the event description itself.

To provide sufficient data we use a range of features based
on lexical analysis as well as ones based on distributional word
representation using neural networks. We use news articles that
have one or more than two event categories, and then train our
classifiers from the features. There are several labeled event
datasets; however, many of them assign only one category
to each event. To perform MLC for events, we create a new
database and open it on our server (Sec. III).

The contributions of this paper can be summarized as
follows:

1) We propose a novel feature selection method.
2) We create a new dataset available online.
3) We conducted evaluations and then confirmed that our

classifier achieves approximately 60% in micro-average
F1 score. This result is more 10% better than baselines.

2Usually, only very popular or important events have own names.
3https://en.wikipedia.org/wiki/Portal:Current events



The remainder of this paper is organized as follows: Section
II provides summaries of several related works. In Section
III, we describe our dataset. We propose our method of
feature vector selection in Section IV. Section V describes
experimental results. Section VI contains our conclusions.

II. RelatedWork

Kosmerlj et al. propose event categories that are originally
defined by Wikipedia editors, and then investigated automatic
classification using TF-IDF created from news articles [6].
Several events can be mentioned with a few sentences, such as
news articles containing references to related events, historical
accounts or biographies. In categorizing short descriptions
task, the scarcity of data becomes a more severe problem than
long descriptions. To overcome the problem, some studies use
context information. Sriram et al.’s [16] approach classifies
tweets by using author information, url and hashtags of tweets.
Nie et al. [13] use Naive Bayes classifier equipped with
texts, image and video contents for Q&A classification. Lee et
al. [10] classify queries using user-click behavior to identify
user goals in web search. On the other hand, using external
information such as Wikipedia resource is also a popular
approach. Zelikovitz and Marquez [22] train a classifier with
LSA [3] based on Wikipedia data, and Phan et al. [15]
propose a generalized framework of classifiers with topic
model. This framework first trains the topic model on texts
of an external resource. Explicit Semantic Analysis (ESA)
is applied in [19] to map short texts to Wikipedia articles.
Sumikawa and Jatowt propose a feature selection method to
classify short descriptions of past events [18]. These studies
propose classifying event description frameworks; however,
they are designed as multi-class classification that assigns only
one category to an event.

III. Data Collection

A. Event categories

We use 13 categories: Reign (Rg), Diplomacy (Dp),
War (Wr), production (Pr), Commerce (Cr), Study
(St), Religion (Rl), Literature and Thought (LT),
Technology (Tc), Popular Movement (PM), Community
(Cn), Disparity (Ds) and Environment (En). They are
described in [5] as a proposal of an event category list to
define the curriculum of teaching history with connecting
past and present. These categories are based on definitions
of Encyclopedia of Historiography [14]. We show example
events for the 13 categories in Tab. I4.

B. Datasets

In this paper, we use news articles describing events.
These articles typically have enough words for classification;
however, most of all news articles are assigned categories
defined by their companies or organizations. Thus, they are

4We use Japanese news articles to evaluate classifications in this paper as described
in Sec. V. Even though we did not use the listed example events in the evaluation, we
show them to ease understanding what kinds of events can be assigned to from the 13
categories.

usually different from the above 13 event categories. To train
our classifiers, we manually assigned more than one event
categories from the 13 ones to several news articles. The
assignment processes were done by two Japanese researchers
working on history education research and HistoInformatics.
They all have Ph. D. degrees; therefore, the dataset is created
by experts. We open this new ground truth dataset on our web
server5.

C. Statistics of Dataset

We use news articles included in the Mainichi newspaper
articles published in 20126. This dataset includes approxi-
mately 100,000 articles for each year. As for 2012, this dataset
includes 110,587 articles. We manually select them reporting
events, and then we prepared 130 labeled and 9,337 unlabeled
news articles as our dataset.

TABLE II
Number of articles per category

Category Num. of articles Category Num. of articles
Cr 45 St 14
Dp 58 Cn 29
Pr 25 LT 15
Rg 43 PM 27
En 14 Tc 20
Rl 26 Wr 21
Ds 18

We show the number of articles per category in Tab. II. For
each event category, there are at least 10 labeled articles. We
summarize the statistics of our dataset in Tab. III.

TABLE III
Statistics of dataset

Num. of categories 13
Num. of labeled description 130

Num. of unlabeled description 9,337
Ave. length 887.9

Ave. num. of categories per description 2.7
Ave. num. of description per category 27.3

As our experiment uses Japanese texts, we performed mor-
phological analysis [7] to divide words as no spaces between
words in Japanese. We also remove stop words and facilitate
stemming are also applied at this time.

IV. Feature Selection

In this section, we describe how our approach creates feature
vectors to train classifiers.

A. Word-based features

First, we create TF-IDF vectors (v1) from all the event
descriptions to measure similarity based on their terms.

5http://www.historymining.org/files/13category events.txt
6CD-Mainichi Newspapers 2012 data, Nichigai Associates, Inc., 2012 (Japanese)



B. Semantic-based features

Second, we use all Doc2Vec [8] (v2), LSA (v3), and LDA
[2] (v4) to capture latent semantic structures of texts.

C. Noun-based features

Nouns play a key role to distinguish event categories.
For example, diplomacy events tend to include names of
politicians whereas commerce events frequently mention pro-
duction items. In the same categories, the nouns tend to have
similar semantics. For example, if there are two events the
prime minister Abe Shinzou proposed new trading policies and
the prime minister Theresa May negotiated trading rules with
Japan, both of the nouns, Abe Shinzou and Theresa May, are
politicians leading their countries.

To capture the semantic similarity between nouns, we
perform word embedding by Skip-gram model [11]. As this
technique assigns vectors to each word where the closer the
meaning of them, the greater similarity they indicate, we
replace all nouns in event descriptions with their top-k closed
words on the vectors. For example, if 5 words prime, minister,
proposed, policies, and trading are the top-5 closest words to
Abe Shinzou on the vector space, we replace Abe Shinzou
with the 5 words on event descriptions. We then create TF-
IDF vectors (v5) from the replaced words.

D. Combining Feature Vectors

Finally, we combine all the features, and then perform
feature selection to avoid sparsity. Let si is a size of the ith
feature vector. For each event description, we create 5 feature
vectors (v1, v2, ..., v5), and then simply combine them as a
feature vector; therefore, the size of a combined feature vector
is s1 + s2 + ...+ s5. For the combined feature vectors, we apply
a method of dimensional reduction.

V. Experimental Results

A. Experimental Design

Evaluation criteria. There are several ways to measure
performances of MLC in several different points of views.
Usually, these performances are measured by two kinds of
methods: label-based measures and example-based loss func-
tions [20]. The label-based measures decompose the evaluation
with respect to each label whereas the example-based loss
functions compute the average differences of the actual and
the predicted sets of labels over all examples.

As for the label-based measurement, we use micro- and
macro-average precision, recall and F1 score. These micro-
average measurements calculate metrics globally by counting
the total true positives, false negatives and false positives.
In contrast, the macro-average measurements treat all classes
equally; in other words, they compute the metrics indepen-
dently for each class and then take the average.

In addition, as for multi-label accuracy, we use Jaccard
index based measurement. This measurement calculates a
score by the dissimilarity between two sets by dividing the
difference of the sizes of the union and the intersection of the
two sets with the size of the union.

As for the example-based loss functions, hamming loss
(HL), ranking loss (RL) and log loss (LL) are popular mea-
surements in MLC. HL calculates the fraction of the wrong
labels to the total number of labels. RL means a proportion
of pairs of labels which are not correctly ordered. Finally, LL
calculates scores from probabilistic confidence. This metric
can be seen as cross-entropy between the distribution of the
true labels and the predictions. In these measurements, the
smaller these scores, the better the performances of the model.
We calculate all the above scores by averaging of 5-fold cross-
validation.

Parameters. We set the both of the numbers of dimensions
of LDA and LSA are 20. For Word2Vec and Doc2Vec, we set
100 as the dimensional size. For creating v5, we set 5 as k.

Algorithms. We trained our event classifier as SSL (semi-
supervised learning) because we must assign more than one
event categories to each news article as described in Sec. III;
therefore, we perform SSL style event classifier training to
reduce the preparation cost. We have implemented two kinds
of SSL classifiers: EM algorithm-based classifiers and graph-
based ones. These classifiers are listed as follows:

1) Naive Bayes + EM algorithm (NB): We trained Naive
Bayes classifier with EM algorithm.

2) Random Forests + EM algorithm (RFs): We trained
Random Forests classifier with EM algorithm.

3) SVM (RBF kernel) + EM algorithm (SVM-RBF): We
trained SVM whose kernel is an RBF one with EM
algorithm.

4) SVM (Linear kernel) + EM algorithm (SVM-Lin.): We
trained SVM whose kernel is a linear one with EM
algorithm.

5) Label Propagation (LP): LP is a graph-based SSL clas-
sification algorithm [23]. This algorithm takes cluster
assumption meaning that similar nodes tend to have
common labels to calculate scores for assigning cat-
egories. This calculation is performed by iteratively
multiplying label scores with similarities between nodes.

6) Dynamic LP (DLP): DLP is an extension of LP to take
label correlation [21].

7) LP using amendable clamping (LPAC): LPAC is the
state-of-the-art algorithm of LP-based algorithm [12].
LPAC is originally designed for label completion task of
MLC by emphasizing the cluster assumption; however,
this algorithm achieves better than traditional classifiers
on a simple MLC task. We use LPAC as a baseline in
this study.

We trained the first four classifiers as one-vs-rest classification.
We checked three methods of feature selection as follows:

1) L1 Norm Regularization (L1): This method trains linear
model penalized with the L1 norm, and then selects the
non-zero coefficients.

2) Random Forests (RFs): This method calculates impor-
tance for each feature, and discard irrelevant features
according to the values of importance.



3) PCA: This method decomposes a multivariate dataset in
a set of successive orthogonal components that explain
a maximum amount of the variance.

B. Discussions of Accuracies

First of all, we evaluate how the SSL style training improves
micro-average F1 scores for all classifiers that are trained on
all feature vectors combined by L1 based feature selection.
We show the results in Figs. 1 and 2. In the both of the two
figures, the y axis represents the F1 score. In Fig. 1 the x axis
represents the number of iterations of EM algorithm whereas
the x axis of Fig. 2 represents the iteration numbers to train
the graph-based algorithms. We can see that NB achieved the
best score, approximately 60%, at the second iteration of EM
algorithm.
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Fig. 1. Micro-average F1 scores of EM algorithm-based SSL style classifi-
cation.

60%

50%

40%

30%

20%

10%

0%
0 500 1,000 1,500 2,000 2,500 3,000 3,500

LP

LPAC

DLP

LNP

Fig. 2. Micro-average F1 scores of graph-based classification.

Fig. 3 shows F1 scores of NB for three different feature
selection methods. We can see that L1 based feature selection
is the best method; therefore, we show results of classifiers
using L1 based feature selection in the following this section.

Next, we show micro-average F1 scores for all baselines and
our approaches in Tab. IV. NB equipped with all the features
achieved the best results for almost all the categories as well as
on the whole dataset. Thus, we can conclude that combining
all the features improves F1 score for almost all the categories.
Especially, the F1 scores for 9 categories, Cr, Dp, Pr, Rl, St,
LT, PM, Tc and Wr, were improved over 10% compared with the
best results of individual feature groups. Weaker a result for
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Fig. 3. Micro-average F1 scores of NB for different algorithms of dimension
reduction.

En class was likely due to relatively small size of training data
for the class as indicated in Tab. II. To better understanding
reasons about why 3 categories Cn, Wr and Ds were weak
results, we plot the number of co-occurred category pairs in
Fig 4. Looking at 2 categories Cn and Wr, Dp is often used with
these two categories. Comparing Dp, the numbers of articles
of the 2 categories are almost half size; therefore, the reason
of weak results for the two categories can be considered as the
small size of training data. We can also see similar situation
for Ds descriptions.
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Fig. 4. Co-occurrences of labels.

We next evaluate two other kinds of accuracies (macro-
average F1 (MF) and multi-label accuracy (MA) and three
loss scores (HL, LL and RL) in Tab. V. In almost of all
measurements, combining all feature vectors improved the
scores. Especially, our SVM and LPAC achieved the best
scores. In RL measurement, the baseline Doc2Vec achieved
the best score. This result indicates that if it is important
to decrease RL scores in some application, Doc2Vec based
feature vectors can be useful. However, we can conclude that
combining all the features improves scores for almost all the
categories from the almost of all results of Tabs. IV and V.

Because we observed that our 3 classifiers, NB, SVM-
RBF and LPAC, achieved better scores, we check their micro-
average precisions and recalls as well as F1 scores in Figs. 5,
6 and 7. We can see that almost of all results for NB achieved
more than 50% for the 3 measurements. Although SVM-
RBF and LPAC achieved the best scores in almost of all loss



TABLE IV
F1 scores for NB obtained when using individual feature groups vs. all features used together for NB, RFs and SVM settings for each class. The bold-faced

numbers indicate the best on a particular terms given the metric.
NB with individual feature groups Proposed methods

Category TF-IDF Doc2Vec LSA LDA Noun LP DLP LPAC All+NB All+RFs All+SVM-RBF All+SVM-Lin. All+LP ALL+DLP ALL+LPAC
Cr 51.6% 56.3% 55.5% 57.1% 54.9% 36.0% 59.5% 50.4% 70.4% 56.4% 71.5% 64.0% 61.0% 60.1% 53.8%
Dp 62.1% 63.7% 63.0% 64.8% 61.9% 66.0% 59.5% 75.2% 71.8% 68.8% 68.1% 68.3% 68.4% 59.0% 69.6%
Pr 38.3% 40.1% 36.6% 37.5% 35.0% 20.0% 0.0% 45.0% 58.5% 49.8% 47.9% 31.1% 43.9% 43.0% 58.3%
Rg 54.9% 50.2% 54.8% 53.5% 50.6% 52.0% 47.1% 50.1% 54.7% 59.3% 57.9% 52.3% 39.0% 47.6% 53.6%
En 16.2% 21.0% 27.1% 24.4% 24.9% 0.0% 0.0% 12.4% 32.0% 41.3% 0.0% 0.0% 0.0% 4.1% 0.0%
Rl 40.1% 46.0% 43.4% 34.2% 43.1% 69.5% 20.7% 61.9% 76.5% 61.8% 63.3% 56.3% 52.2% 21.0% 71.8%
Ds 31.7% 27.0% 32.2% 26.1% 25.7% 28.8% 10.7% 22.6% 37.3% 21.3% 30.0% 8.0% 16.0% 27.0% 23.4%
St 26.0% 32.8% 25.8% 26.5% 27.8% 40.0% 0.0% 50.0% 69.0% 63.3% 64.3% 52.9% 6.7% 0.0% 27.4%
Cn 36.2% 34.5% 38.1% 35.6% 38.3% 13.6% 32.3% 34.9% 21.9% 23.6% 0.0% 15.7% 22.8% 31.3% 30.1%
LT 24.8% 36.9% 20.0% 38.4% 31.6% 0.0% 0.0% 38.1% 63.9% 41.0% 42.7% 13.3% 0.0% 0.0% 0.0%
PM 40.9% 36.5% 37.0% 32.3% 32.7% 35.3% 47.1% 44.7% 52.4% 36.9% 0.0% 0.0% 56.2% 47.6% 47.0%
Tc 36.4% 34.4% 34.5% 26.1% 27.7% 19.4% 0.0% 28.0% 56.3% 24.4% 53.4% 63.3% 25.2% 21.0% 39.9%
Wr 33.7% 28.1% 33.8% 28.2% 30.5% 39.0% 26.7% 42.8% 41.3% 11.7% 0.0% 5.0% 23.1% 25.7% 35.3%

Total 42.4% 41.9% 42.2% 40.4% 40.3% 43.3% 39.2% 49.6% 58.4% 51.2% 54.0% 49.4% 46.4% 38.6% 51.5%

TABLE V
Scores of macro-average F1 (MF), multi-label accuracy, (MA), hamming loss

(HL), log loss (LL), ranking loss (RL).
MF MA HL LL RL

TF-IDF 44.8% 79.6% 0.2035 6.8795 0.4442
Doc2Vec 72.5% 79.4% 0.2059 0.9671 0.1400

LSA 67.3% 77.5% 0.2248 0.5622 0.1993
LDA 65.2% 79.4% 0.2059 0.4721 0.2286
Noun 55.1% 81.1% 0.1893 6.1565 0.3359

LP 32.3% 26.4% 0.2224 6.4113 0.2796
DLP 23.3% 25.3% 0.4740 6.7732 0.347

LPAC 62.0% 74.2% 0.2580 0.7622 0.2140
All+NB 71.9% 80.0% 0.2 1.3951 0.1503
All+RFs 69.3% 80.5% 0.1952 0.8406 0.2871

All+SVM-RBF 71.1% 82.2% 0.1781 0.4261 0.1887
All+SVM-Lin. 68.0% 81.1% 0.1887 0.4579 0.2122

All+LP 62.4% 74.9% 0.2515 1.5260 0.3129
All+DLP 29.8% 23.8% 0.6041 6.7671 0.3276

ALL+LPAC 75.1% 65.1% 0.2488 0.9335 0.2487

functions, some scores of micro-average precision, recall and
F1 were quite low, especially, scores for En (Environment) in
both of SVM-RBF and LPAC, Cn (community), PM (Popular
Movement) and Wr (War) in SVM-RBF and LT (Literature
and Thought) in LPAC were 0%. These results indicate that
NB is the best algorithm in average.
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Fig. 5. Micro-average precision, recall andF1 scores for All+NB.

In Fig. 8 we show average importance values (blue bars) and
standard deviations (black lines) of our features. We can see
that the noun-based feature was the most important in multi-
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Fig. 6. Micro-average precision, recall and F1 scores for All+SVM-RBF.
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Fig. 7. Micro-average precision, recall and F1 scores for All+LPAC.

label event description classification. TF-IDF was a little bit
important feature. In contrast, all of the semantic base features
were not very important for this task. We believe that once we
increase the number of labeled descriptions, importances for
the semantic base features will be increased.

Finally, we try to analyze what and why our classifier
performed mis-predictions. At the beginning, we show what
categories were wrongly assigned to events by our classifier
(All+NB) in Fig. 9. We can see that Wr was often assigned to
Cn events wrongly. This is because both of the two categories
tend to mention locations. For example, as the community-
related events, some countries or regions are mentioned with
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Fig. 9. Wrongly assigned categories. The x axis represents the number of
categories that are wrongly assigned to if a category of y axis is not assigned
to.

issues of economic or political policies for the places. On
the other hand, as for the war event, several countries are
mentioned as the main actors of the events.

Next, we count the number of categories that are attached
in the test data but our classifier did not assign in Fig. 10.
We can see that several test data that are attached both of two
categories Cr and Dp tend to be assigned one of them.
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Fig. 10. Missed categories. The x axis represents the number of categories
that are correct but are not assigned to if a category of y axis is not assigned
to.

VI. Conclusions

Understanding categories of events can have many applica-
tions including support for building historical analogy models,
across-time connection of events/entities or structuring longer
text collections such as Wikipedia (e.g., year related articles).

In this paper we introduce a classification technique for multi-
labeled descriptions of events. We showed that our technique
could improve micro-average F1 scores by approximately
10%. For this evaluation, we created a new ground truth
dataset, and open it on our web server.

Future work will identify how the accuracies can be im-
proved by increasing labeled descriptions. Our current dataset
is relatively small; it includes only 130 labeled and 9,337
unlabeled descriptions. We will add more labeled data from
other datasets such as The New York Times.
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