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1. Problem and Motivation
Partial redundancy elimination (PRE) is a code optimization tech-
nique that makes each partially redundant expression totally redun-
dant by inserting the same expression at some program points and
removing it from the original point [3, 7, 10]. The insertion and re-
moval process moves the expression to some nodes of control flow
graph closer to the start node, which tends to increase the register
pressure, potentially leading to register spills [4, 9]. The resulting
the extra execution cost of the objective code may exceed the im-
provement caused by the redundancy elimination. To decrease the
impact of the register spills, costly redundant expressions should
be removed preferentially and not-costly ones should be removed
only if the removal does not lead to register spills.

We propose an effective PRE that selectively applies PRE to
costly expressions including loop-invariant expressions to suppress
register pressure. We call the approach Selective PRE (SPRE).
SPRE is based on global value numbering (GVN) [1] in order to
capture mostsecond-order effects, are captured by iteratively ap-
plying PRE after copy propagation in the traditional PRE. As GVN
globally assigns the same value number to equivalent expressions,
SPRE recognize redundancies based on the value numbers. Further-
more, SPRE moves array references so that references to the same
array are continuously executed by aggregating them, instead of re-
moving them, and SPRE inserts new references to nodes where the
register pressure is minimized without changing the referencing or-
der. The reference aggregation increases the spatial locality on the
memory, so that the references are likely to make a cache hit hap-
pen, because an array reference causes not only referred address
but also its vicinity to be loaded to the cache memory.

Consider Figure 1(a). SPRE moves loop-invariant expression
z1+1 at Node 3 to Node 2 as shown in Figure 1(b). On the other
hand, expressionz1+1 at Node 4 is not removed, although it is re-
dundant. Furthermore, SPRE moves array referencea[i] at Node
2 immediate beforeb[i] at Node 1.

2. Background and Related Work
There are some techniques that remove some redundancies while
suppressing register spill [2, 6]. These techniques do not consider
the second-order effects and the good results are not reported. To
the best of our knowledge, SPRE is the first practical technique.
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Figure 1. Code motion considering register spill. (a) Original
code. (b) Result of applying our technique.

3. Approach and Uniqueness
SPRE is based oneffective demand-drive PRE(EDDPRE) [8] that
performs GVN and then applies query propagation to each expres-
sion one-by-one intopological sort order, so that the expressions
whose queries have the same answer oftrue are removed. The
query propagation backwardly propagates a query from each ex-
pressione to check whether there are some expressions with the
same value number ase. If all propagated queries havetrue as an-
swers,e is considered to be redundant. Otherwise, EDDPRE checks
whether additional expressions can be safely inserted to make all
queriestrue. If that is possible,e becomes redundant after inser-
tions; otherwise,e is not redundant. In addition, once the query
returnstrue at a node, the answer of sub-queryisSelf is also given
simultaneously, which checks whether the currently checked ex-
pression is the source expression. IfisSelf is true, the propagation
path includes a cycle and the source expression is found to be loop-
invariant.

SPRE selectively applies EDDPRE to each expression, depend-
ing on its cost. Furthermore, in SPRE, once a query about an array
referencesrc is propagated to another array referencear referring
to the same array beyond some references to different arrays,src



Table 1. System parameters of machine
CPU Intel Core i5-2320 3.00GHz
Integer registers 8
Floating registers 8
OS Ubuntu 12.04LTS

Table 2. Execution time of objective code.
programs A.PRE*2 B.EDDPRE C.SPRE (A-C)/A (B-C)/B
equake 74.1 sec 72.0 sec 66.8 sec 9.9% 7.2%
art 32.9 sec 33.3 sec 33.3 sec -1.2% 0.0%
mcf 33.6 sec 33.5 sec 33.4 sec 0.6% 0.3%
bzip2 74.4 sec 78.3 sec 73.3 sec 1.5% 6.4%
gzip 102 sec 103 sec 101 sec 1.0% 1.9%
gap 53 sec 47.7 sec 44.4 sec 16.2% 6.9%
ammp 120 sec 119 sec 118 sec 1.7% 0.8%
vpr 72 sec 70.4 sec 66.5 sec 7.6% 5.5%
parser 105 sec 107 sec 102 sec 2.9% 4.7%
twolf 113 sec 107 sec 107 sec 5.3% 0.0%

is moved at nodes where the total live-ranges of the indexes is the
shortest aroundar.

Uniqueness

Our approach has three characteristics that make it unique. First,
SPRE removes only costly redundant expressions based on value
numbers. Second, captures many second-order effects. Third,
SPRE moves array references so that references to the same ar-
ray appear continuously and decrease register pressure.

4. Results and Contributions
We have implemented our technique as a low-level intermediate
representation converter in the COINS compiler [5]. To evaluate
the benefits derived from our technique, we compared SPRE to
EDDPRE and PRE*2 which applies PRE twice and applies copy
propagation between them.

We applied the optimizations to three programs (equake, art,
and ammp) of CFP2000, and seven programs (mcf, bzip2, gzip,
gap, vpr, parser, and twolf) of CINT2000 in the SPEC benchmarks
on x86 machine whose parameters are shown in Table 1.

Table 2 shows the execution times of PRE*2, EDDPRE, and
SPRE. SPRE achieved better execution efficiency than EDDPRE
and PRE*2 for most programs. Comparing SPRE with PRE*2, in
art, the execution time was increased because register spill was not
so serious problem in the program, while the removal of redundan-
cies remarkably improves the efficiency. These results suggest that
our technique is effective for many programs.
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